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Abstract

In many machine learning systems that jointly learn from multiple modalities, a1

core research question is to understand the nature of multimodal interactions: the2

emergence of new task-relevant information during learning from both modalities3

that was not present in either alone. We study this challenge of interaction quantifi-4

cation in a semi-supervised setting with only labeled unimodal data and naturally5

co-occurring multimodal data (e.g., unlabeled images and captions, video and6

corresponding audio) but when labeling them is time-consuming. Using a precise7

information-theoretic definition of interactions, our key contributions are the deriva-8

tions of lower and upper bounds to quantify the amount of multimodal interactions9

in this semi-supervised setting. We propose two lower bounds based on the amount10

of shared information between modalities and the disagreement between separately11

trained unimodal classifiers, and derive an upper bound through connections to12

approximate algorithms for min-entropy couplings. We validate these estimated13

bounds and show how they accurately track true interactions. Finally, two semi-14

supervised multimodal applications are explored based on these theoretical results:15

(1) analyzing the relationship between multimodal performance and estimated16

interactions, and (2) self-supervised learning that embraces disagreement between17

modalities beyond agreement as is typically done.18

1 Introduction19

A core research question in multimodal learning is to understand the nature of multimodal interactions20

across modalities in the context of a task: the emergence of new task-relevant information during21

learning from both modalities that was not present in either modality alone [6, 56]. In settings where22

labeled multimodal data is abundant, the study of multimodal interactions has inspired advances in23

theoretical analysis [1, 37, 57, 71, 82] and representation learning [43, 64, 79, 92] in language and24

vision [3], multimedia [9], healthcare [45], and robotics [49]. In this paper, we study the problem of25

interaction quantification in a setting where there is only unlabeled multimodal dataDM = {(x1, x2)}26

but some labeled unimodal data Di = {(xi, y)} collected separately for each modality. This27

multimodal semi-supervised paradigm is reminiscent of many real-world settings with the emergence28

of separate unimodal datasets like large-scale visual recognition [20] and text classification [84], as29

well as the collection of data in multimodal settings (e.g., unlabeled images and captions or video30

and audio [54, 75, 64, 95]) but when labeling them is time-consuming [40, 41].31

Using a precise information-theoretic definition of interactions [10, 87], our key contributions are32

the derivations of lower and upper bounds to quantify the amount of multimodal interactions in33

this semi-supervised setting with only Di and DM . We propose two lower bounds for interaction34

quantification: our first lower bound relates multimodal interactions with the amount of shared35

information between modalities, and our second lower bound introduces the concept of modality36

disagreement which quantifies the differences of classifiers trained separately on each modality.37

Finally, we propose an upper bound through connections to approximate algorithms for min-entropy38

couplings [14]. To validate our derivations, we experiment on large-scale synthetic and real-world39

datasets with varying amounts of interactions. In addition, these theoretical results naturally yield40

new algorithms for two applications involving semi-supervised multimodal data:41
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1. We first analyze the relationship between interaction estimates and downstream task performance42

when optimal multimodal classifiers are learned access to multimodal data. This analysis can help43

develop new guidelines for deciding when to collect and fuse labeled multimodal data.44

2. As the result of our analysis, we further design a new family of self-supervised learning objectives45

that capture disagreement on unlabeled multimodal data, and show that this learns interactions46

beyond agreement conventionally used in the literature [64, 68, 95]. Our experiments show strong47

results on four datasets: relating cartoon images and captions [38], predicting expressions of48

humor and sarcasm from videos [12, 35], and reasoning about multi-party social interactions [93].49

More importantly, we believe these results shed light on the intriguing connections between disagree-50

ment, multimodal interactions, and performance. We release our code and models at <anon>.51

2 Preliminaries52

2.1 Definitions and setup53

Let Xi and Y be finite sample spaces for features and labels. Define � to be the set of joint54

distributions over (X1,X2,Y). We are concerned with features X1,X2 (with support Xi) and labels55

Y (with support Y) drawn from some distribution p ∈�. We denote the probability mass function by56

p(x1, x2, y), where omitted parameters imply marginalization. In many real-world applications [54,57

64, 68, 90, 95], we only have partial datasets from p rather than the full distribution:58

• Labeled unimodal data D1 = {(x1, y) ∶ X1 ×Y}, D2 = {(x2, y) ∶ X2 ×Y}.59

• Unlabeled multimodal data DM = {(x1, x2) ∶ X1 ×X2}.60

D1, D2 and DM follow the pairwise marginals p(x1, y), p(x2, y) and p(x1, x2). We define �p1,2 =61

{q ∈ � ∶ q(xi, y) = p(xi, y) ∀y ∈ Y , xi ∈ Xi, i ∈ [2]} as the set of joint distributions which agree62

with the labeled unimodal data D1 and D2, and �p1,2,12 = {r ∈� ∶ r(x1, x2) = p(x1, x2), r(xi, y) =63

p(xi, y)} as the set of joint distributions which agree with all D1,D2 and DM .64

Despite partial observability, we often still want to understand the degree to which two modalities can65

interact to contribute new information not present in either modality alone, in order to inform our deci-66

sions on multimodal data collection and modeling [43, 52, 57, 92]. We now cover relevant background67

towards a formal information-theoretic definition of interactions and their approximation.68

2.2 Information theory, partial information decomposition, and synergy69

Information theory formalizes the amount of information that a variable (X1) provides about another70

(X2), and is quantified by Shannon’s mutual information (MI) and conditional MI [67]:71

I(X1;X2) = � p(x1, x2) log p(x1, x2)
p(x1)p(x2)dx, I(X1;X2�Y ) = � p(x1, x2�y) log p(x1, x2�y)

p(x1�y)p(x2�y)dxdy.
The MI of two random variables X1 and X2 measures the amount of information (in bits) obtained72

about X1 by observing X2, and by extension, conditional MI is the expected value of MI given the73

value of a third (e.g., Y ). However, the extension of information theory to three or more variables to74

describe the synergy between two modalities for a task remains an open challenge. Among many75

proposed frameworks, Partial information decomposition (PID) [87] posits a decomposition of the76

total information 2 variables X1,X2 provide about a task Y into 4 quantities: Ip({X1,X2};Y ) =77

R+U1+U2+S where Ip({X1,X2};Y ) is the MI between the joint random variable (X1,X2) and Y ,78

redundancy R describes task-relevant information shared between X1 and X2, uniqueness U1 and U279

studies the task-relevant information present in only X1 or X2 respectively, and synergy S investigates80

the emergence of new information only when both X1 and X2 are present [10, 33]:81

Definition 1. (Multimodal interactions) Given X1, X2, and a target Y , we define their redundant82

(R), unique (U1 and U2), and synergistic (S) interactions as:83

R = max
q∈�p1,2

Iq(X1;X2;Y ), U1 = min
q∈�p1,2

Iq(X1;Y �X2), U2 = min
q∈�p1,2

Iq(X2;Y �X1), (1)

S = Ip({X1,X2};Y ) − min
q∈�p1,2

Iq({X1,X2};Y ), (2)

where the notation Ip(⋅) and Iq(⋅) disambiguates mutual information (MI) under p and q respectively.84

I(X1;X2;Y ) = I(X1;X2) − I(X1;X2�Y ) is a multivariate extension of information theory [8,85

60]. Most importantly, R, U1, and U2 can be computed exactly using convex programming over86

distributions q ∈ �p1,2 with access only to the marginals p(x1, y) and p(x2, y) by solving an87
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Figure 1: We estimate two types of synergy: (1) agreement synergy that arises as a result of Y increasing
the agreeing shared information between X1 and X2 (reminiscent of common cause structures as opposed to
redundancy in common effect), and (2) disagreement synergy that emerges due to the disagreement between
unimodal predictors resulting in a new prediction y ≠ y1 ≠ y2 (rather than uniqueness where y = y2 ≠ y1).

equivalent max-entropy optimization problem q
∗
= argmax

q∈�p1,2
Hq(Y �X1,X2) [10, 57]. This is88

a convex optimization problem with linear marginal-matching constraints (see Appendix A.2). This89

gives us an elegant interpretation that we need only labeled unimodal data in each feature from D190

and D2 to estimate redundant and unique interactions.91

3 Estimating Synergy Without Multimodal Data92

Unfortunately, S is impossible to compute via equation (2) when we do not have access to the full93

joint distribution p, since the first term Ip(X1,X2;Y ) is unknown. Instead, we will aim to provide94

lower and upper bounds in the form S ≤ S ≤ S which depend only on D1, D2, and DM .95

3.1 Lower bounds on synergy96

Our first insight is that while labeled multimodal data is unavailable, the output of unimodal classifiers97

may be compared against each other. Let �Y = {r ∈ R�Y �+ � ��r��1 = 1} be the probability simplex98

over labels Y . Consider the set of unimodal classifiers Fi ∋ fi ∶ Xi → �Y and multimodal classifiers99

FM ∋ fM ∶ X1 ×X2 → �Y . The crux of our method is to establish a connection between modality100

disagreement and a lower bound on synergy.101

Definition 2. (Modality disagreement) Given X1, X2, and a target Y , as well as unimodal classifiers102

f1 and f2, we define modality disagreement as ↵(f1, f2) = Ep(x1,x2)[d(f1, f2)] where d ∶ Y ×Y →103

R≥0 is a distance function in label space scoring the disagreement of f1 and f2’s predictions.104

Quantifying modality disagreement gives rise to two types of synergy as illustrated in Figure 1:105

agreement synergy and disagreement synergy. As their names suggest, agreement synergy happens106

when two modalities agree in predicting the label and synergy arises within this agreeing information.107

On the other hand, disagreement synergy happens when two modalities disagree in predicting the108

label, and synergy arises due to disagreeing information.109

Agreement synergy We first consider the case when two modalities contain shared information110

that leads to agreement in predicting the outcome. In studying these situations, a driving force for111

estimating S is the amount of shared information I(X1;X2) between modalities, with the intuition112

that more shared information naturally leads to redundancy which gives less opportunity for new113

synergistic interactions. Mathematically, we formalize this by relating S to R [87],114

S = R − Ip(X1;X2;Y ) = R − Ip(X1;X2) + Ip(X1;X2�Y ). (3)

implying that synergy exists when there is high redundancy and low (or even negative) three-way115

MI Ip(X1;X2;Y ) [7, 31]. By comparing the difference in X1,X2 dependence with and without the116

task (i.e., Ip(X1;X2) vs Ip(X1;X2�Y )), 2 cases naturally emerge (see top half of Figure 1):117

1. S >R: When both modalities do not share a lot of information as measured by low I(X1;X2),118

but conditioning on Y increases their dependence: I(X1;X2�Y ) > I(X1;X2), then there is119

synergy between modalities when combining them for task Y . This setting is reminiscent of120

common cause structures. Examples of these distributions in the real world are multimodal121

question answering, where the image and question are less dependent (some questions like ‘what122

is the color of the car’ or ‘how many people are there’ can be asked for many images), but the123

answer (e.g., ‘blue car’) connects the two modalities, resulting in dependence given the label. As124

expected, S = 4.92,R = 0.79 for the VQA 2.0 dataset [32].125
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2. R > S: Both modalities share a lot of information but conditioning on Y reduces their dependence:126

I(X1;X2) > I(X1;X2�Y ), which results in more redundant than synergistic information. This127

setting is reminiscent of common effect structures. A real-world example is in detecting sentiment128

from multimodal videos, where text and video are highly dependent since they are emitted by129

the same speaker, but the sentiment label explains away some of the dependencies between both130

modalities. Indeed, for multimodal sentiment analysis from text, video, and audio of monologue131

videos on MOSEI [51, 94], R = 0.26 and S = 0.04.132

However, Ip(X1;X2�Y ) cannot be computed without access to the full distribution p. In Theorem 1,133

we obtain a lower bound on Ip(X1;X2�Y ), resulting in a lower bound Sagree for synergy.134

Theorem 1. (Lower-bound on synergy via redundancy) We can relate S to R as follows135

S
agree
= R − Ip(X1;X2) + min

r∈�p1,2,12

Ir(X1;X2�Y ) ≤ S (4)

We include the full proof in Appendix A.3, but note that minr∈�p1,2,12
Ir(X1;X2�Y ) is equivalent to136

a max-entropy optimization problem solvable using convex programming. This implies that Sagree137

can be computed efficiently using only unimodal data Di and unlabeled multimodal data DM .138

Disagreement synergy We now consider settings where two modalities disagree in predicting139

the outcome: suppose y1 = argmax
y
p(y�x1) is the most likely prediction from the first modality,140

y2 = argmax
y
p(y�x2) for the second modality, and y = argmax

y
p(y�x1, x2) the true multimodal141

prediction. During disagreement, there are again 2 cases (see bottom half of Figure 1):142

1. U > S: Multimodal prediction y = argmax
y
p(y�x1, x2) is the same as one of the unimodal143

predictions (e.g., y = y2), in which case unique information in modality 2 leads to the outcome.144

A real-world dataset that we categorize in this case is MIMIC involving mortality and disease145

prediction from tabular patient data and time-series medical sensors [45] which primarily shows146

unique information in the tabular modality. The disagreement on MIMIC is high ↵ = 0.13, but147

since disagreement is due to a lot of unique information, there is less synergy S = 0.01.148

2. S >U: Multimodal prediction y is different from both y1 and y2, then both modalities interact149

synergistically to give rise to a final outcome different from both disagreeing unimodal predictions.150

This type of joint distribution is indicative of real-world examples such as predicting sarcasm151

from language and speech - the presence of sarcasm is typically detected due to a contradiction152

between what is expressed in language and speech, as we observe from the experiments on153

MUSTARD [12] where S = 0.44 and ↵ = 0.12 are both relatively large.154

We formalize these intuitions via Theorem 2, yielding a lower bound Sdisagree based on disagreement155

minus the maximum unique information in both modalities:156

Theorem 2. (Lower-bound on synergy via disagreement, informal) We can relate synergy S and157

uniqueness U to modality disagreement ↵(f1, f2) of optimal unimodal classifiers f1, f2 as follows:158

S
disagree

= ↵(f1, f2) ⋅ c −max(U1, U2) ≤ S (5)

for some constant c depending on the label dimension �Y � and choice of label distance function d.159

Theorem 2 implies that if there is substantial disagreement ↵(f1, f2) between unimodal classifiers,160

it must be due to the presence of unique or synergistic information. If uniqueness is small, then161

disagreement must be accounted for by synergy, thereby yielding a lower bound Sdisagree. Note that162

the notion of optimality in unimodal classifiers is important: poorly-trained unimodal classifiers could163

show high disagreement but would be uninformative about true interactions. We include the formal164

version of the theorem based on Bayes’ optimality and a full proof in Appendix A.4.165

Hence, agreement and disagreement synergy yield separate lower bounds Sagree and Sdisagree. Note166

that these bounds always hold, so we could take S =max{Sagree, Sdisagree}.167

3.2 Upper bound on synergy168

While the lower bounds tell us the least amount of synergy possible in a distribution, we also want to169

obtain an upper bound on the possible synergy, which together with the above lower bounds sandwich170

S. By definition, S = Ip({X1,X2};Y ) − maxq∈�p1,2
Iq({X1,X2};Y ). Thus, upper bounding171
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synergy is the same as maximizing the MI Ip(X1,X2;Y ), which can be rewritten as172

max
r∈�p1,2,12

Ir({X1,X2};Y ) = max
r∈�p1,2,12

{Hr(X1,X2) +Hr(Y ) −Hr(X1,X2, Y )} (6)

=Hp(X1,X2) +Hp(Y ) − min
r∈�p1,2,12

Hr(X1,X2, Y ), (7)

where the second line follows from the definition of �p1,2,12 . Since the first two terms are constant,173

an upper bound on S requires us to look amongst all multimodal distributions r ∈� which match the174

unimodal Di and unlabeled multimodal data DM , and find the one with minimum entropy.175

Theorem 3. Solving r
∗
= argmin

r∈�p1,2,12
Hr(X1,X2, Y ) is NP-hard, even for a fixed �Y � ≥ 4.176

Theorem 3 suggests we cannot tractably find a joint distribution which tightly upper bounds synergy177

when the feature spaces are large. Thus, our proposed upper bound S is based on a lower bound on178

minr∈�p1,2,12
Hr(X1,X2, Y ), which yields179

Theorem 4. (Upper-bound on synergy)180

S ≤Hp(X1,X2) +Hp(Y ) − min
r∈�p12,y

Hr(X1,X2, Y ) − max
q∈�p1,2

Iq({X1,X2};Y ) = S (8)

where �p12,y = {r ∈ � ∶ r(x1, x2) = p(x1, x2), r(y) = p(y)}. The second optimization problem is181

solved with convex optimization. The first is the classic min-entropy coupling over (X1,X2) and Y ,182

which is still NP-hard but admits good approximations [14, 15, 47, 65, 17, 18]. Proofs of Theorem 3,183

4, and approximations for min-entropy couplings are deferred to Appendix A.5 and A.6.184

4 Experiments185

We design comprehensive experiments to validate these estimated bounds and show new relationships186

between disagreement, multimodal interactions, and performance, before describing two applications187

in (1) estimating optimal multimodal performance without multimodal data to prioritize the collection188

and fusion data sources, and (2) a new disagreement-based self-supervised learning method.189

4.1 Verifying predicted guarantees and analysis of multimodal distributions190

Synthetic bitwise datasets: We enumerate joint distributions over X1,X2,Y ∈ {0,1} by sampling191

100,000 vectors in the 8-dimensional probability simplex and assigning them to each p(x1, x2, y). Us-192

ing these distributions, we estimate p̂(y�x1) and p̂(y�x2) to compute disagreement and the marginals193

p̂(x1, y), p̂(x2, y), and p̂(x1, x2) to estimate the lower and upper bounds.194

Figure 2: Our two lower bounds
Sagree and Sdisagree track actual
synergy S from below, and the up-
per bound S tracks S from above.
We find that Sagree, Sdisagree tend
to approximate S better than S.

Large real-world multimodal datasets: We also use the large col-195

lection of real-world datasets in MultiBench [53]: (1) MOSI: video-196

based sentiment analysis [91], (2) MOSEI: video-based sentiment197

and emotion analysis [94], (3) MUSTARD: video-based sarcasm198

detection [12], (5) MIMIC: mortality and disease prediction from199

tabular patient data and medical sensors [45], and (6) ENRICO: clas-200

sification of mobile user interfaces and screenshots [50]. While the201

previous bitwise datasets with small and discrete support yield exact202

lower and upper bounds, this new setting with high-dimensional203

continuous modalities requires the approximation of disagreement204

and information-theoretic quantities: we train unimodal neural net-205

work classifiers f̂✓(y�x1) and f̂✓(y�x2) to estimate disagreement,206

and we cluster representations of Xi to approximate the continuous207

modalities by discrete distributions with finite support to compute208

lower and upper bounds. We summarize the following regarding the209

utility of each bound (see details in Appendix B):210

1. Overall trends: For the 100,000 bitwise distributions, we com-211

pute S, the true value of synergy assuming oracle knowledge of the212

full multimodal distribution, and compute Sagree − S, Sdisagree − S,213

and S − S for each point. Plotting these points as a histogram in214

Figure 2, we find that the two lower bounds track actual synergy215

from below (Sagree − S and Sdisagree − S approaching 0 from below), and the upper bound tracks216
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Table 1: We compute lower and upper bounds on S without labeled multimodal data and compare them to the
true S assuming knowledge of the full joint distribution p: the bounds track S well on MUSTARD and MIMIC.

MOSEI UR-FUNNY MOSI MUSTARD MIMIC ENRICO
S 0.97 0.97 0.92 0.79 0.41 2.09
S 0.03 0.18 0.24 0.44 0.02 0.34
Sagree 0 0 0.01 0.04 0 0.01
Sdisagree 0.01 0.01 0.03 0.11 −0.12 −0.55

x1 x2 y p

0 0 0 0
0 0 1 0.05
0 1 0 0.03
0 1 1 0.28
1 0 0 0.53
1 0 1 0.03
1 1 0 0.01
1 1 1 0.06

(a) Disagreement XOR

x1 x2 y p

0 0 0 0.25
0 1 1 0.25
1 0 1 0.25
1 1 0 0.25

(b) Agreement XOR

x1 x2 y p

0 0 0 0.25
0 1 0 0.25
1 0 1 0.25
1 1 1 0.25

(c) y = x1

x1 x2 y p

0 0 0 0.5
1 1 1 0.5

(d) y = x1 = x2

Table 2: Four representative examples: (a) disagreement XOR has high disagreement and high synergy, (b)
agreement XOR has no disagreement and high synergy, (c) y = x1 has high disagreement and uniqueness but no
synergy, and (d) y = x1 = x2 has all agreement and redundancy but no synergy.

synergy from above (S − S approaching 0 from above). The two lower bounds are quite tight, as we217

see that for many points Sagree −S and Sdisagree −S are approaching close to 0, with an average gap of218

0.18. The disagreement bound seems to be tighter empirically than the agreement bound: for half the219

points, Sdisagree is within 0.14 and Sagree is within 0.2 of S. For the upper bound, there is an average220

gap of 0.62. However, it performs especially well on high synergy data. When S > 0.6, the average221

gap is 0.24, with more than half of the points within 0.25 of S.222

On real-world MultiBench datasets, we show the estimated bounds and actual S (assuming knowledge223

of full p) in Table 1. The lower and upper bounds track true S: as estimated Sagree and Sdisagree224

increases from MOSEI to UR-FUNNY to MOSI to MUSTARD, true S also increases. For225

datasets like MIMIC with disagreement but high uniqueness, Sdisagree can be negative, but we226

can rely on Sagree to give a tight estimate on low synergy. Unfortunately, our bounds do not227

track synergy well on ENRICO. We believe this is because ENRICO displays all interactions:228

R = 0.73, U1 = 0.38, U2 = 0.53, S = 0.34, which makes it difficult to distinguish between R and S229

using Sagree or U and S using Sdisagree since no interaction dominates over others, and S is also quite230

loose relative to the lower bounds. Given these general observations, we now carefully analyze the231

relationships between interactions, agreement, and disagreement.232

2. The relationship between redundancy and synergy: In Table 2b we show the classic AGREE-233

MENT XOR distribution where X1 and X2 are independent, but Y = 1 sets X1 ≠X2 to increase their234

dependence. I(X1;X2;Y ) is negative, and Sagree = 1 ≤ 1 = S is tight. On the other hand, Table 2d is235

an extreme example where the probability mass distributed uniformly only when y = x1 = x2 and 0236

elsewhere. As a result, X1 is always equal to X2 (perfect dependence), and yet Y perfectly explains237

away the dependence between X1 and X2 so I(X1;X2�Y ) = 0: Sagree = 0 ≤ 0 = S. A real-world238

example is multimodal sentiment analysis from text, video, and audio on MOSEI, R = 0.26 and239

S = 0.03, and as expected the lower bound is small Sagree = 0 ≤ 0.03 = S (Table 1).240

3. The relationship between disagreement and synergy: In Table 2a we show an example called241

DISAGREEMENT XOR. There is maximum disagreement between marginals p(y�x1) and p(y�x2):242

the likelihood for y is high when y is the opposite bit as x1, but reversed for x2. Given both x1243

and x2: y seems to take a ‘disagreement’ XOR of the individual marginals, i.e. p(y�x1, x2) =244

argmax
y
p(y�x1) XOR argmax

y
p(y�x2), which indicates synergy (note that an exact XOR would245

imply perfect agreement and high synergy). The actual disagreement is 0.15, synergy is 0.16, and246

uniqueness is 0.02, indicating a very strong lower bound Sdisagree = 0.14 ≤ 0.16 = S. A real-world247

equivalent dataset is MUSTARD, where the presence of sarcasm is often due to a contradiction248

between what is expressed in language and speech, so disagreement ↵ = 0.12 is the highest out of all249

the video datasets, giving a lower bound Sdisagree = 0.11 ≤ 0.44 = S.250
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Table 3: Estimated bounds (P acc(f∗M), P acc(f∗M)) on optimal multimodal performance in comparison with the
best unimodal performance Pacc(fi), best simple fusion Pacc(fMsimple), and best complex fusion Pacc(fMcomplex).

MOSEI UR-FUNNY MOSI MUSTARD MIMIC ENRICO
P acc(f∗M) 1.07 1.21 1.29 1.63 1.27 0.88
Pacc(fMcomplex) 0.88 0.77 0.86 0.79 0.92 0.51
Pacc(fMsimple) 0.85 0.76 0.84 0.74 0.92 0.49
Pacc(fi) 0.82 0.74 0.83 0.74 0.92 0.47
P acc(f∗M) 0.52 0.58 0.62 0.78 0.76 0.48

On the contrary, the lower bound is low when all disagreement is explained by uniqueness (e.g.,251

y = x1, Table 2c), which results in Sdisagree = 0 ≤ 0 = S (↵ and U cancel each other out). A real-world252

equivalent is MIMIC: from Table 1, disagreement is high ↵ = 0.13 due to unique information253

U1 = 0.25, so the lower bound informs us about the lack of synergy Sdisagree = −0.12 ≤ 0.02 = S.254

Finally, the lower bound is loose when there is synergy without disagreement, such as AGREEMENT255

XOR (y = x1 XOR x2, Table 2b) where the marginals p(y�xi) are both uniform, but there is full256

synergy: Sdisagree = 0 ≤ 1 = S. Real-world datasets which fall into agreement synergy include257

UR-FUNNY where there is low disagreement in predicting humor ↵ = 0.03, and relatively high258

synergy S = 0.18, which results in a loose lower bound Sdisagree = 0.01 ≤ 0.18 = S.259

4. On upper bounds for synergy: Finally, we find that the upper bound for MUSTARD is quite close260

to real synergy, S = 0.79 ≥ 0.44 = S. On MIMIC, the upper bound is the lowest S = 0.41, matching261

the lowest S = 0.02. Some of the other examples in Table 1 show bounds that are quite weak. This262

could be because (i) there indeed exists high synergy distributions which match Di and DM , but263

these are rare in the real world, or (ii) our approximation used in Theorem 4 is mathematically loose.264

We leave these as open directions for future work.265

4.2 Application 1: Estimating multimodal performance for multimodal fusion266

Now that we have validated the accuracy of these lower and upper bounds, we can apply them towards267

estimating multimodal performance without labeled multimodal data. This serves as a strong signal268

for deciding (1) whether to collect paired and labeled data from a second modality, and (2) whether269

one should use complex fusion techniques on collected multimodal data.270

Method: Our approach for answering these two questions is as follows: given D1, D2, and DM ,271

we can estimate synergistic information based on our derived lower and upper bounds S and S.272

Together with redundant and unique information which can be computed exactly, we will use the273

total information to estimate the performance of multimodal models trained optimally on the full274

multimodal distribution. Formally, we estimate optimal performance via a result from Feder and275

Merhav [25] and Fano’s inequality [23], which together yield tight bounds of performance as a276

function of total information Ip({X1,X2};Y ).277

Theorem 5. Let Pacc(f
∗
M
) = Ep [1 [f

∗
M
(x1, x2) = y]] denote the accuracy of the Bayes’ optimal278

multimodal model f
∗
M

(i.e., Pacc(f
∗
M
) ≥ Pacc(f

′
M
) for all f

′
M
∈ FM ). We have that279

2Ip({X1,X2};Y )−H(Y ) ≤ Pacc(f
∗
M
) ≤

Ip({X1,X2};Y ) + 1

log �Y �
, (9)

where we can plug in R+U1, U2 +S ≤ Ip({X1,X2};Y ) ≤ R+U1, U2 +S to obtain lower P acc(f
∗
M
)280

and upper P acc(f
∗
M
) bounds on optimal multimodal performance (refer to Appendix C for full281

proof). Finally, we summarize estimated multimodal performance as the average P̂M = (P acc(f
∗
M
) +282

P acc(f
∗
M
))�2. A high P̂M suggests the presence of important joint information from both modalities283

(not present in each) which could boost accuracy, so it is worthwhile to collect the full distribution p284

and explore multimodal fusion [56] to learn joint information over unimodal methods.285

Results: For each MultiBench dataset, we implement a suite of unimodal and multimodel models286

spanning simple and complex fusion. Unimodal models are trained and evaluated separately on287

each modality. Simple fusion includes ensembling by taking an additive or majority vote between288

unimodal models [36]. Complex fusion is designed to learn higher-order interactions as exemplified289

by bilinear pooling [28], multiplicative interactions [43], tensor fusion [92, 39, 52, 58], and cross-290

modal self-attention [78, 88]. See Appendix C for models and training details. We include unimodal,291

simple and complex multimodal performance, as well as estimated lower and upper bounds on292

optimal multimodal performance in Table 3.293
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Figure 3: Datasets with higher estimated multimodal performance
P̂M tend to show improvements from unimodal to multimodal (left)
and from simple to complex multimodal fusion (right).

RQ1: Should I collect multimodal294

data? We compare estimated per-295

formance P̂M with the actual differ-296

ence between unimodal and best mul-297

timodal performance in Figure 3 (left).298

Higher estimated P̂M correlates with299

a larger gain from unimodal to mul-300

timodal. MUSTARD and ENRICO301

show the most opportunity for multi-302

modal modeling, but MIMIC shows303

less improvement.304

RQ2: Should I investigate multimodal305

fusion? From Table 3, synergistic datasets like MUSTARD and ENRICO show best reported306

multimodal performance only slightly above the estimated lower bound, indicating more work to be307

done in multimodal fusion. For datasets with less synergy like MOSEI and MIMIC, the best multi-308

modal performance is much higher than the estimated lower bound, indicating that existing fusion309

methods may already be quite optimal. We compare P̂M with the performance gap between complex310

and simple fusion methods in Figure 3 (right). We again observe trends between higher P̂M and311

improvements with complex fusion, with large gains on MUSTARD and ENRICO. We expect new312

methods to further improve the state-of-the-art on these datasets due to their generally high interaction313

values and low multimodal performance relative to estimated lower bound P acc(f
∗
M
).314

4.3 Application 2: Self-supervised multimodal learning via disagreement315

* [monotone] *

f ?(             |              )

? dis(   ,    ) + 
Modality Disagreement 

Losses

?  = ? pred(f ?( MASK |  al l ) ) +

...

?

I picture   
geckos in    

adver t isement s

Audio Encoder 
(AST)

Image Encoder 
(ViT)

Word Embed 
(BPE)

1,1 H/32,
W/321,2 MASKpicture geckos in 1 2 3 ...

Wtvt at

Joint Encoder

f(mask | all )      f(mask | pairs of modalities) x3

d(modality 1, modality 2) x 3
L_textL_disagreement, text     

=

= +

1 2 3

1 2

? dis(   ,    ) + 1 3

? dis(   ,    ) 2 3

I

MASK Wt f ?(             |              )MASK atMASK vtf ?(             |              )

(face conveys a hint of a smile) (text is out of place in context of a 
conversation with a gecko expert)

(monotone signals something is afoot)

Modality predictions can sometimes disagree. Modality disagreement losses allow this during training.

?

Figure 4: Masked predictions do not always agree across modalities,
as shown in this example from the Social-IQ dataset [93]. Adding a
slack term enabling pre-training with modality disagreement yields
strong performance improvement over baselines.

Finally, we highlight an application of316

our analysis towards self-supervised317

pre-training, which is generally per-318

formed by encouraging agreement as319

a pre-training signal on large-scale320

unlabeled data [64, 68] before super-321

vised fine-tuning [61]. However, our322

results suggest that there are regimes323

where disagreement can lead to syn-324

ergy that may otherwise be ignored325

when only training for agreement. We326

therefore design a new family of self-327

supervised learning objectives that328

capture disagreement on unlabeled329

multimodal data.330

Method: We build upon masked331

prediction that is popular in self-332

supervised pre-training: given multi-333

modal data of the form (x1, x2) ∼ p(x1, x2) (e.g., x1 = caption and x2 = image), first mask out334

some words (x′1) before using the remaining words (x1�x
′
1) to predict the masked words via learning335

f✓(x
′
1�x1�x

′
1), as well as the image x2 to predict the masked words via learning f✓(x

′
1�x2) [68, 95]. In336

other words, maximizing agreement between f✓(x
′
1�x1�x

′
1) and f✓(x

′
1�x2) in predicting x

′
1:337

Lagree = d(f✓(x
′
1�x1�x

′
1), x

′
1) + d(f✓(x

′
1�x2), x

′
1) (10)

for a distance d such as cross-entropy loss for discrete word tokens. To account for disagreement, we338

allow predictions on the masked tokens x
′
1 from two different modalities i, j to disagree by a slack339

variable �ij . We modify the objective such that each term only incurs a loss penalty if each distance340

d(x, y) is larger than � as measured by a margin distance d�(x, y) =max(0, d(x, y) − �):341

Ldisagree = Lagree + �

1≤i<j≤2
d�ij(f✓(x

′
1�xi), f✓(x

′
1�xj)) (11)

These � terms are hyperparameters, quantifying the amount of disagreement we tolerate between342

each pair of modalities during cross-modal masked pretraining (� = 0 recovers full agreement).343

We show this visually in Figure 4 by applying it to masked pre-training on text, video, and audio344

using MERLOT Reserve [95], and also apply it to FLAVA [68] for images and text experiments (see345

extensions to 3 modalities and details in Appendix D).346
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Table 4: Allowing for disagreement during self-supervised masked pre-training yields performance improvements
on these datasets. Over 10 runs, improvements that are statistically significant are shown in bold (p < 0.05).

SOCIAL-IQ UR-FUNNY MUSTARD CARTOON
FLAVA [68], MERLOT Reserve [95] 70.6 ± 0.6 80.0 ± 0.7 77.4 ± 0.8 38.6 ± 0.6
+ disagreement 71.1 ± 0.5 80.7 ± 0.5 78.1 ± 1.1 39.3 ± 0.5

Setup: We choose four settings with natural disagreement: (1) UR-FUNNY: humor detection347

from 16,000 TED talk videos [35], (2) MUSTARD: 690 videos for sarcasm detection from TV348

shows [12], (3) SOCIAL IQ: 1,250 multi-party videos testing social intelligence knowledge [93], and349

(4) CARTOON: matching 704 cartoon images and captions [38].350

Results: From Table 4, allowing for disagreement yields improvements on these datasets, with351

those on SOCIAL IQ, UR-FUNNY, MUSTARD being statistically significant (p-value < 0.05352

over 10 runs). By analyzing the value of � resulting in the best validation performance through353

hyperparameter search, we can analyze when disagreement helps for which datasets, datapoints,354

and modalities. On a dataset level, we find that disagreement helps for video/audio and video/text,355

improving accuracy by up to 0.6% but hurts for text/audio, decreasing the accuracy by up to 1%. This356

is in line with intuition, where spoken text is transcribed directly from audio for these monologue and357

dialog videos, but video can have vastly different information. In addition, we find more disagreement358

between text/audio for SOCIAL IQ, which we believe is because it comes from natural videos while359

the others are scripted TV shows with more agreement between speakers and transcripts.360

We further analyze individual datapoints with disagreement On UR-FUNNY, the moments when the361

camera jumps from the speaker to their presentation slides are followed by an increase in agreement362

since the video aligns better with the speech. In MUSTARD, we observe disagreement between363

vision and text when the speaker’s face expresses the sarcastic nature of a phrase. This changes the364

meaning of the phrase, which cannot be inferred from text only, and leads to synergy. We include more365

qualitative examples including those on the CARTOON captioning dataset in Appendix D.366

5 Related Work367

Multivariate information theory: The extension of information theory to 3 or more variables [86,368

29, 72, 60, 74, 30] remains on open problem. Partial information decomposition (PID) [87] was369

proposed as a potential solution that satisfies several appealing properties [10, 33, 83, 87]. Today,370

PID has primarily found applications in cryptography [59, 42], neuroscience [63], physics [26],371

complex systems [69], and biology [16], but its application towards machine learning, in particular372

multimodality, is an exciting but untapped research direction. To the best of our knowledge, our work373

is the first to provide formal estimates of synergy in the context of unlabeled or unpaired multimodal374

data which is common in today’s self-supervised paradigm [55, 64, 68, 95].375

Understanding multimodal models: Information theory is useful for understanding co-training [11,376

5, 13], multi-view learning [77, 80, 76, 71], and feature selection [89], where redundancy is an377

important concept. Prior research has also studied multimodal models via additive or non-additive378

interactions [27, 70, 37], gradient-based approaches [81], or visualization tools [85]. This goal of379

quantifying and modeling multimodal interactions [57] has also motivated many successful learning380

algorithms, such as contrastive learning [46, 64], agreement and alignment [21, 54], factorized381

representations [79], as well as tensors and multiplicative interactions [92, 52, 43].382

Disagreement-based learning has been used to estimate performance from unlabeled data [4, 44],383

active learning [19, 34], and guiding exploration in reinforcement learning [62, 66]. In multimodal384

learning, however, approaches have been primarily based on encouraging agreement in prediction [11,385

21, 24, 71] or feature space [64, 61] in order to capture shared information. Our work has arrived386

at similar conclusions regarding the benefits of disagreement-based learning, albeit from different387

mathematical motivations and applications.388

6 Conclusion389

We proposed estimators of multimodal interactions when observing only labeled unimodal data and390

some unlabeled multimodal data, a general setting that encompasses many real-world constraints391

involving partially observable modalities, limited labels, and privacy concerns. Our key results draw392

new connections between multimodal interactions, the disagreement of unimodal classifiers, and min-393

entropy couplings. Future work should investigate more applications of multivariate information394

theory in designing self-supervised models, predicting multimodal performance, and other tasks395

involving feature interactions such as privacy-preserving and fair representation learning.396
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[48] Mladen Kovačević, Ivan Stanojević, and Vojin Šenk. On the entropy of couplings. Information and513

Computation, 242:369–382, 2015.514

[49] Michelle A Lee, Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio Savarese, Li Fei-Fei, Animesh515

Garg, and Jeannette Bohg. Making sense of vision and touch: Self-supervised learning of multimodal516

representations for contact-rich tasks. In 2019 International Conference on Robotics and Automation517

(ICRA), pages 8943–8950. IEEE, 2019.518

[50] Luis A Leiva, Asutosh Hota, and Antti Oulasvirta. Enrico: A dataset for topic modeling of mobile ui519

designs. In 22nd International Conference on Human-Computer Interaction with Mobile Devices and520

Services, pages 1–4, 2020.521

[51] Paul Pu Liang, Ruslan Salakhutdinov, and Louis-Philippe Morency. Computational modeling of human522

multimodal language: The mosei dataset and interpretable dynamic fusion.523

[52] Paul Pu Liang, Zhun Liu, Yao-Hung Hubert Tsai, Qibin Zhao, Ruslan Salakhutdinov, and Louis-Philippe524

Morency. Learning representations from imperfect time series data via tensor rank regularization. In ACL,525

2019.526

[53] Paul Pu Liang, Yiwei Lyu, Xiang Fan, Zetian Wu, Yun Cheng, Jason Wu, Leslie Yufan Chen, Peter Wu,527

Michelle A Lee, Yuke Zhu, et al. Multibench: Multiscale benchmarks for multimodal representation528

learning. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks529

Track (Round 1), 2021.530

[54] Paul Pu Liang, Peter Wu, Liu Ziyin, Louis-Philippe Morency, and Ruslan Salakhutdinov. Cross-modal531

generalization: Learning in low resource modalities via meta-alignment. In Proceedings of the 29th ACM532

International Conference on Multimedia, pages 2680–2689, 2021.533

[55] Paul Pu Liang, Yiwei Lyu, Xiang Fan, Shengtong Mo, Dani Yogatama, Louis-Philippe Morency, and Ruslan534

Salakhutdinov. Highmmt: Towards modality and task generalization for high-modality representation535

learning. arXiv preprint arXiv:2203.01311, 2022.536

[56] Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Foundations and recent trends in multimodal537

machine learning: Principles, challenges, and open questions. arXiv preprint arXiv:2209.03430, 2022.538

[57] Paul Pu Liang, Yun Cheng, Xiang Fan, Chun Kai Ling, Suzanne Nie, Richard Chen, Zihao Deng,539

Faisal Mahmood, Ruslan Salakhutdinov, and Louis-Philippe Morency. Quantifying & modeling feature540

interactions: An information decomposition framework. arXiv preprint arXiv:2302.12247, 2023.541

12



[58] Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshminarasimhan, Paul Pu Liang, AmirAli Bagher Zadeh,542

and Louis-Philippe Morency. Efficient low-rank multimodal fusion with modality-specific factors. In543

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long544

Papers), pages 2247–2256, 2018.545

[59] Ueli M Maurer and Stefan Wolf. Unconditionally secure key agreement and the intrinsic conditional546

information. IEEE Transactions on Information Theory, 45(2):499–514, 1999.547

[60] William McGill. Multivariate information transmission. Transactions of the IRE Professional Group on548

Information Theory, 4(4):93–111, 1954.549

[61] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive550

coding. arXiv preprint arXiv:1807.03748, 2018.551

[62] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement. In552

International conference on machine learning, pages 5062–5071. PMLR, 2019.553

[63] Giuseppe Pica, Eugenio Piasini, Houman Safaai, Caroline Runyan, Christopher Harvey, Mathew Diamond,554

Christoph Kayser, Tommaso Fellin, and Stefano Panzeri. Quantifying how much sensory information in a555

neural code is relevant for behavior. Advances in Neural Information Processing Systems, 30, 2017.556

[64] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish557

Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from558

natural language supervision. In International Conference on Machine Learning, pages 8748–8763. PMLR,559

2021.560

[65] Massimiliano Rossi. Greedy additive approximation algorithms for minimum-entropy coupling problem.561

In 2019 IEEE International Symposium on Information Theory (ISIT), pages 1127–1131. IEEE, 2019.562

[66] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.563

Planning to explore via self-supervised world models. In International Conference on Machine Learning,564

pages 8583–8592. PMLR, 2020.565

[67] Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical journal, 27566

(3):379–423, 1948.567

[68] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus568

Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model. In Proceedings569

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15638–15650, 2022.570

[69] Sten Sootla, Dirk Oliver Theis, and Raul Vicente. Analyzing information distribution in complex systems.571

Entropy, 19(12):636, 2017.572

[70] Daria Sorokina, Rich Caruana, Mirek Riedewald, and Daniel Fink. Detecting statistical interactions with573

additive groves of trees. In Proceedings of the 25th international conference on Machine learning, pages574

1000–1007, 2008.575

[71] Karthik Sridharan and Sham M Kakade. An information theoretic framework for multi-view learning. In576

Conference on Learning Theory, 2008.577
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