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Abstract: The throughput rate of mass spectrometers and the size of publicly available metabolomics 16 
data are growing rapidly. Illuminating the molecules present in untargeted mass spectrometry data 17 
that cannot be identified by existing approaches (the dark matter of metabolomics) remains a 18 
challenging task. In the past decade, molecular networking and MASST were introduced to organize 19 
and query untargeted mass spectrometry data. While useful for single datasets, these methods cannot 20 
scale to searching and clustering billions of mass spectral data in metabolomics repositories, e.g. the 21 
Global Natural Product Social (GNPS) molecular networking infrastructure. To address this 22 
shortcoming, we developed an efficient strategy for the computation of dot-product between mass 23 
spectra, where the relevant information from spectral datasets is stored in an indexing table. Based 24 
on this strategy, we designed MASST+ and Networking+, scalable approaches for querying and 25 
clustering mass spectra that can process datasets that are up to three orders of magnitude larger than 26 
the state-of-the-art. For example, MASST+ can query against 717 million spectra from the GNPS 27 
public data in less than an hour and Networking+ is able to map the chemical diversity of all GNPS 28 
public data in days.  29 



 

 

        Introduction 30 

During the past decade, the size of mass spectral data collected in the fields of natural products, 31 
exposomics, and metabolomics has grown exponentially9,16,18. In accordance with the advances in 32 
mass spectrometry technology, multiple computational methods were developed for analyzing this 33 
massive data. Recently Mass Spectrometry Search Tool (MASST) was introduced as a search engine 34 
for finding analogs of a query spectrum in mass spectrometry repositories19. MASST has 35 
demonstrated utility in the annotation of a wide variety of unidentified metabolites, including 36 
clinically important molecules in patient cohorts15,3,6, toxins/pesticides in environmental samples14, 37 
fungal metabolites10, and metabolites from pathogenic microorganisms4,11,5. Moreover, molecular 38 
networking was introduced for clustering spectral datasets into families of related molecules29,28. 39 
Molecular Networking has yielded a systematic view of the chemical space in different ecosystems 40 
and helped determine the structure of many compounds20,21,22,23,24,25,27,26. 41 

MASST and molecular networking are based on a naive approach for scoring two tandem mass 42 
spectra. MASST compares the query spectrum against all reference spectra one by one and computes 43 
a similarity score based on the relative intensities of shared and shifted peaks. Therefore, the runtime 44 
of MASST grows linearly with the repository size. Molecular networking first uses MS-Clustering28 45 
to cluster identical spectra by calculating a dot-product score (ExactScore, Figure 1a) between the 46 
spectra. Then Spectral Networking29 is used to calculate a dot product score that accounts for peaks 47 
that are shared or shifted (ShiftedScore, Figure 1b) between all pairs of clusters in order to find groups 48 
of related molecules. This latter procedure grows quadratically with the number of clusters. Current 49 
trends show that the size of public mass spectral repositories doubles every two to three years 50 
(Supplementary Fig. 1). Therefore, the current implementations of MASST and Molecular 51 
Networking will not be able to scale with the growth of future repositories. A MASST search for a 52 
single spectrum against the clustered global natural product social (GNPS) database (~83 million 53 
clusters) currently takes about an hour on a single thread and a MASST search against the entire 54 
GNPS (717 million spectra) does not complete after being run for three days. Currently, molecular 55 
networking analysis of a million spectra takes a few hours, while molecular networking of ~20 million 56 
spectra does not yield results after running for a week. Similar to the area of computational genomics, 57 
handling the exponential growth of repositories requires the development of more efficient and 58 
scalable search algorithms.  59 

In this paper, we introduce a fast dot product algorithm that preprocesses a set of spectra into an 60 
indexing table. This indexing table maps all possible precursor m/z and fragment ion m/z pairs to the 61 
spectra that contain them.  Using this indexing, given a query spectrum, the dot product with respect 62 
to all spectra can be computed efficiently by iterating through each query peak and using the indexing 63 
table to retrieve spectra with similar peaks (Figure 2). Since mass spectra are sparse, only a small 64 
fraction of spectra/peaks are retrieved for each query. The ability to leverage this sparsity requires 65 
only a small fraction of the compute used by naive scoring methods because the vast majority of the 66 
MS/MS spectra in the index are never touched during the query process. By integrating this indexing 67 
approach into the scoring subroutines of MASST and Molecular Networking, we develop two new 68 
computational tools, MASST+ and Networking+, that are two to three orders of magnitude faster than 69 
state-of-the-art on large datasets. Further, this indexing approach supports on-line growth, that is, the 70 
insertion of new spectra without the need for recalculation from scratch.  The enables both MASST+ 71 
and Networking+ to efficiently handle the dynamic growth of reference spectra.  Currently MASST+ 72 
is available as a web service from https://masst.ucsd.edu/masstplus/. GNPS supports stand-alone 73 
MASST+ (Supplementary Fig. 2) and integration with molecular networking (Supplementary Fig. 3). 74 
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Figure 1. Similarity score. (a) In case of exact search, MASST searches a query spectrum against all database spectra 80 
with similar precursor masses, and computes the ExactScore, a sum of multiplications between intensities of peaks shared 81 
by the query and database spectrum (shown in solid grey). In this case the score is 6.2 * 3.2 + 10.2 * 16.3 = 186.1. (b) In 82 
the case of analog search, MASST searches the query spectrum against all database spectra within a specific precursor 83 
mass range (e.g. 300 Da) and computes the ShiftedScore, a sum of multiplications between intensities of peaks that are 84 
shared and ∆-shifted between query and database spectrum. Here there is one shared (solid grey) and two ∆-shifted 85 
(dashed grey) peaks, yielding a total score of 6.2 * 2.2 + 10.2 * 9.2 + 15.4 * 9.2 = 249.16. ∆ denotes the precursor mass 86 
difference between query and database spectra. 87 

88 
Figure 2: Fast Dot Product. (a) Given a database of spectra the fast dot procedure starts with (b) constructing an indexing 89 
table, where each row corresponds to a fragment peak mass, and contains a list of tuples of spectra indices that contain 90 
the peak, along with the intensity of the peak in these spectra. (c) Given a query spectrum, all lists corresponding to peaks 91 
present in the query are retrieved. Then, (d) for each list, and for each tuple in the list, the product of the intensity of the 92 
corresponding query peak and database peak is added to the total dot product score of query and database spectra. For 93 
simplicity, in this illustration all the spectra have the same precursor mass. 94 

Results. 95 

Outline of MASST+ algorithm. Given a query spectrum, MASST+ efficiently searches a database 96 



 

 

of reference spectra to find similar entries by creation of an indexing table – a data structure which 97 
allows rapid retrieval of similar spectra based on the peaks present in the query spectrum. For each 98 
precursor mass  and each peak mass , a list of indices of spectra with precursor  and peak  are 99 
stored, along with the intensity of the peaks. In case of exact search, MASST+ iterates through the 100 
peaks in the query spectrum and retrieves the lists associated with a query peak and query's precursor 101 
mass. The ExactScore is calculated by multiplying and adding up the intensity of each peak in query 102 
spectrum and reference spectra (Figure 2).  In case of analog search (Supplementary Fig. 4), MASST+ 103 
uses a much larger precursor mass tolerance (e. g. 300Da) and computes ShiftedScore that takes into 104 
account both shared and ∆-shifted peaks (peaks in reference spectra that are ∆ Da larger than peaks 105 
in query), where ∆ is the mass difference between the precursor of query and reference spectra (Figure 106 
3).   107 
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Figure 3. Fast Dot Product Indexing. The fast dot product indexing table corresponds to a two-dimensional grid, with 113 
precursor mass on the x-axis and peak mass on the y-axis. Each database peak is inserted into a list corresponding to a 114 
specific location in the grid, determined by the peak mass and the precursor mass. In exact search, for each query peak 115 
only the list in a single cell will be retrieved (highlighted with green circle). For analog search, red cells (corresponding 116 
the shared peaks) and blue cells (corresponding to ∆-shifted peaks) are retrieved. 117 

 118 

Outline of Networking+ algorithm. Networking+ clusters spectral datasets into families of related 119 
molecules by first putting spectra from identical molecules into the same clusters (Clustering+), then 120 
forming the centers of each cluster by taking their consensus, and then connecting the clusters that 121 
are predicted to be generated from related molecules (Pairing+). Clustering+ iterates over all spectra 122 
and associates each spectrum with a cluster that is highly similar. It uses a strategy similar to 123 
MASST+ exact search for efficiently calculating the SharedScore between the spectrum and each 124 
cluster center. Pairing+ uses a shared and ∆-shifted dot-product as a similarity measure for identifying 125 
related spectra. It uses a strategy similar to MASST+ analog search to find all pairs of clusters with 126 
high ShiftedScore.  127 

Benchmarking MASST+. We have benchmarked MASST+ (Table 1) on various GNPS datasets 128 



 

 

including MSV000078787 dataset collected on Streptomyces cultures (5,433 spectra), clustered 129 
GNPS (83,131,248 spectra), and entire GNPS (717,395,473 spectra). While MASST and MASST+ 130 
report identical hits, MASST+ is two orders of magnitude faster and more memory efficient (Table 131 
1). For small data sets we only get a 3-fold increase in speed. This becomes magnified when the data 132 
set that is searched becomes larger. In case of the clustered GNPS, MASST+ performs analog search 133 
in 15 seconds while MASST takes 49 min, a 196-fold increase. In case of the entire GNPS, MASST+ 134 
performs analog search in under two hours on average, while MASST search does not finish within 135 
three days on the GNPS server making it practically not possible to routinely perform such a search. 136 

Figure 4 illustrates the runtime and memory consumption of MASST+ in exact and analog mode for 137 
various subsets of the clustered GNPS. Supplementary Fig. 5 illustrates that indexing time and 138 
memory consumption grows linearly with the size of datasets and Supplementary Fig. 6 shows 139 
indexing time increases for larger values of peak mass tolerance. MASST+ takes eight hours of 140 
compute time and eight gigabytes of memory to index ~83 million spectra from the clustered GNPS 141 
and 72 hours of compute time and 9 gigabytes of memory to index 717 million spectra contained in 142 
GNPS.  Supplementary Fig. 7 breaks down MASST+ runtime into two different steps, loading peaks 143 
lists and computing dot product, for various numbers of query spectra. Loading peak lists consumes 144 
about half of the total runtime when the number of query spectra is greater than 100. 145 

  146 

 147 
Method Mode Dataset (Size) Search Time  Search Memory  # IDs 
MASST exact MSV000078787 (195K) 0.41 sec 50Mb  10 

MASST+ exact MSV000078787 (195K) 0.13 sec 0Kb  10 
MASST analog MSV000078787 (195K) 0.61 sec 40Mb 16 

MASST+ analog MSV000078787 (195K) 0.14 sec 0Kb 16 
MASST exact Clustered GNPS (83M) 34 min 952Mb 49 

MASST+ exact Clustered GNPS (83M) 8.6 sec 24Mb 49 
MASST analog Clustered GNPS (83M) 49 min  1.1Gb 2,175 

MASST+ analog Clustered GNPS (83M) 15.0 sec 159Mb 2,175 
MASST exact Entire GNPS (717M) N/A N/A N/A 

MASST+ exact Entire GNPS (717M) 43 min  21Gb 171 
MASST analog Entire GNPS (717M) N/A N/A N/A 

MASST+ analog Entire GNPS (717M) 115 min 35Gb 265,958 
 148 

Table 1. Benchmarking MASST+ search. MSV000078787 (~195K spectra), clustered GNPS (~83M spectra), or entire 149 
GNPS (~717M spectra) are used as the reference database. Search time, search memory consumption, and number of 150 
identifications resulting from searching queries are shown. For MSV000078787, clustered GNPS, and entire GNPS, 151 
MASST+ is two orders of magnitude faster than MASST while consuming the same or less memory. MASST search did 152 
not yield results for entire GNPS in a reasonable time frame (three days threshold). MASST+ reports are identical to 153 
MASST. 154 

 155 



 

 

 156 

Figure 4. (a) MASST+ is two orders of magnitudes faster than MASST in exact and analog search for various database 157 
sizes. (b) MASST+ outperforms MASST in memory efficiency. 158 

 159 

Benchmarking networking+. Figure 5, Table 2 and Supplementary Tables 1-3 benchmark 160 
Networking+ against molecular networking on various data sizes for which runtime is less than 24 161 
hours. In 24 hours Clustering+ can process 300 million spectra on a single CPU, while MS-Clustering 162 
can process 20 million spectra. Moreover, in this timeline, Pairing+ can process 2 million spectra, 163 
while spectral networking can handle 0.2 million spectra. Clustering+ and Pairing+ are two orders of 164 
magnitude faster than their counterparts, MS-Clustering29 and Spectral Networking28. The clusters 165 
and networks reported by Clustering+ and Pairing+ are identical to MS-Clustering and spectral 166 
networks. As previously noted in Bittremieux et al.43, it was not possible to directly create a molecular 167 
network from all the GNPS spectra, here we show that this is now possible with Networking+ with 168 
minimal computer memory requirements. 169 

 170 
       Method   Dataset (Size) clustering time Clustering memory      #clusters networking time Networking 

memory 
Molecular 
Networking 

MSV000078787 (219,915) 321 sec 662Mb 
 

5,288 8 sec 1224Kb 

Networking
+ 

MSV000078787 (219,915) 27 sec 992Kb 
 

5,288 .25 sec 996Kb 

Molecular 
Networking 

Entire GNPS N/A N/A N/A N/A N/A 

Networking
+ 

Entire GNPS 25 hours 93Gb 8,453,822 97 hours 23Gb 

 171 
Table 2. Benchmarking Molecular Networking and Networking+. MSV000078787 (~195K spectra), entire GNPS 172 
(~717M spectra) are used as spectral datasets. Clustering time, clustering memory, number of clusters, networking time 173 
and networking memory are shown. Networking+ clusters and networks the entire GNPS in 25 and 97 hours respectively 174 
while Molecular Networking does not complete clustering in 14 days.  175 



 

 

 176 
Figure 5. a) Clustering+ runtime versus MS-Clustering. b) Pairing+ runtime versus spectral networking. c) Networking+ 177 
runtime versus Molecular Networking.   Clustering+, Pairing+ and Networking+ are two order of magnitudes faster than 178 
the state-of-the-art methods when processing large datasets.   179 

Networking the entire GNPS. We clustered the entire GNPS (717 million scans) using Clustering+ 180 
and formed the network using Pairing+. This resulted in 8,453,822 million clusters and 4,947,928 181 
connected components with a total of 17,533,386 edges (available from 182 
https://github.com/mohimanilab/MASSTplus). Among 4,948,146 connected components in the 183 
network, 98% (4,849,047 components) consist of a single node, while 1.5%, 0.3%, 0.2% and 0.02% 184 
(74530, 13957, 9239, and 1152 components) had 2, 3, and 4-9 and 10+ nodes (Supplementary Fig. 185 
8). Among 7,986,356 clusters in the network, 1.7% (134,198 Clusters) matched reference spectra 186 
from the NIST library, 6% (477,721 clusters) were a neighbor of a cluster matched NIST library, 14% 187 
(1,130,092 clusters) were a neighbor of a neighbor, and 78% (5,390,554 clusters) were three or more 188 
hops away from any cluster matching NIST library (Supplementary Fig. 9). Of 307,709 clusters 189 
consisting of 20 or more spectra, for 18% (54,518 clusters) all spectra came from a single MassIVE 190 
dataset, while for 13% and 69% (39,428 and 213,763 clusters) spectra came from 2 or 3+ MassIVE 191 
datasets (Supplementary Fig. 10).  About 61 percent of the clusters with precursor mass between 0 192 
and 400 Daltons consisted of only two GNPS spectra whereas less than half the clusters with 193 
precursor mass above 400 Daltons consisted of only two GNPS spectra (Supplementary Fig. 194 
11). Networking+ took 5 days to finish this task on 1 CPU. Currently, this task is not feasible using 195 
existing approaches.  196 

Applying Networking+ for Identification of novel lanthipeptides. The indexing strategies 197 
proposed here are applicable to all classes of small molecules. Here we illustrate the application of 198 
these methods in the case of lanthipeptide natural products. Currently, methods for high-throughput 199 
discovery of lanthipeptides through computational analysis of genomics and metabolomics data 200 
suffer from various limitations, especially at repository scale. Lanthipeptides are a biologically 201 
important class of natural products that include antibiotics30, antifungals31, antivirals32, and 202 
antinociceptives33. Lanthipeptides are structurally defined by the thioether amino acids lanthionine, 203 
methyllanthionine and labionin. Lanthionine and methyllanthionine are introduced by dehydration of 204 
a serine or threonine (to generate a dehydroalanine or dehydrobutyrine) and addition of a cysteine 205 
thiol, catalyzed by a dehydratase and a cyclase, respectively34. During lanthipeptide biosynthesis, a 206 
precursor gene lanA is translated by the ribosome to yield a precursor peptide LanA that consists of 207 
a N-terminal leader peptide and a C-terminal core peptide sequence. The core peptide is post-208 
translationally modified by the lanthionine biosynthetic machinery and other enzymes. It is then 209 
proteolytically cleaved from the leader peptide to yield the mature lanthipeptide and exported out of 210 
the cell by transporters.   211 

Lanthipeptides usually possess network motifs that enable mining them in spectral networks. These 212 
motifs include mass shifts of -18.01Da (H2O mass) that correspond to the varying number of 213 



 

 

dehydrations, and mass shifts equal to amino acid masses that correspond to promiscuity in N-214 
terminal leader processing. We formed the spectral network using Networking+ for a subset of 500 215 
Streptomyces cultures with known genomes (Supplementary Table 4). The dataset contains 9,410,802 216 
scans, which are clustered into 354,401 nodes, 6,032 connected components, and 1,265,311 edges. 217 
Currently, Molecular Networking crashes on this dataset after eight days of processing. We further 218 
only retained 29,639 nodes that possess the network motif by filtering for edges with mass differences 219 
equal to a loss of H2O, NH3, or an amino acid mass. Then we filtered for nodes with long amino acid 220 
sequence tags of various lengths using PepNovo35 (Supplementary Table 5). There are a total of 2,353 221 
nodes with sequence tags of length 12 or longer, and 285 of these nodes are connected to an edge 222 
with a mass difference equal to the mass of one H2O or an amino acid loss. We further inspected 223 
these nodes using our in-house software algorithm, Seq2RiPP 224 
(https://github.com/mohimanilab/seq2ripp). Given a lanthipeptide precursor, Seq2Ripp generates all 225 
molecular structures of all possible candidate molecules by considering different cores and various 226 
modifications and then searches the candidate molecular structures against mass spectra using 227 
Dereplicator36. This strategy identified three known and 14 novel lanthipeptides with p-values below 228 
1e-15 (Table 3). Among them, the precursor of 13 lanthipeptides (76%) overlaps with reports by the 229 
genome mining strategy introduced by Walker et al.40. However, only for two lanthipeptides, the core 230 
peptides predicted are consistent with predictions from Walker et al. (11%). Note that in contrast to 231 
our approach, Walker et al. is based solely on genomics, and it does not use metabolomics data for 232 
identifying the start of core peptide. This demonstrates that MASST+ and Molecular Networking+ can be 233 
used to gain insight into previously uncharacterized molecules. One of the novel peptides (CHM-1731 234 
from Streptomyces albus) is further described in Figure 6.  235 

 236 

 237 
Figure 6. (a) Biosynthetic gene cluster of CHM-1731. Genes with different functions are highlighted with different colors. 238 
(b) Annotation of peaks in mass spectrum representing CHM-1731. B-ions (prefix fragmentations) are shown in blue, and 239 
y-ions (suffix fragmentations) are shown in red. (c) Mass error of annotations are shown in parts per million (ppm). Stars 240 
stand for dehydrated serine / threonine. 241 
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 244 
Organism name Sequence score p-value Mass Walker et al.  reference 
Streptomyces 
rimosus NRRL 
WC-3904 

CHM-1793 DT-18GHCS-18GVCT-
18VLVCT-18VAVC 

   21 2.50E-36 1793.77 YN This paper 
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Streptomyces 
albus NRRL F-
5917 

CHM-1731 YS-18QVCS-18IVVCNT-
18VVICG 

19 5.80E-33 1731.81 YN This paper 

Streptomyces 
lavenduligriseus 
NRRL ISP-5487 

SapT YT-18QGCS-18GLCT-
18IVICAT-18VVICG 

18 1.40E-32 2030.95 YN Kodani et al.41 

Streptomyces 
species NRRL S-
340 

CHM-1911 S-18TAGCS-18GLCT-18IIVCAT-
18VVICA 

17 5.20E-31 1911.91 YN This paper 

Streptomyces 
pathocidini NRRL 
B-24287 

CHM-2168 IT-18S-18IS-18YCT-18PGCT-
18SDGGGS-18GCS-18HCC 

16 1.60E-26 2168.76 YY This paper 

Streptomyces 
moroccanus 
NRRL B-24548 

CHM-2182 IT-18S-18IS-18YCT-18PGCT-
18SEGGGS-18GCS-18HCC 

15 2.00E-25 2182.78 YY This paper 

Streptomyces 
cinerochromoge
nes NBRC 13822 

CHM-1974 YT-18EGCS-18GLCT-
18ILVCAT-18VVIC 

13 9.10E-24 1974.91 NN This paper 

Streptomyces 
hygroscopicus 
NRRL ISP-5087 

CHM-1354 MT-18QVCPVT-18SWHC 13 3.60E-23 1354.56 YN This paper 

Streptomyces 
rimosus NRRL 
WC-3874 

CHM-1831 PSRSSSPGSFPPGST-18PS-
18APS-18 

14 1.60E-21 1831.85 NN This paper 

Streptomyces 
albus NBRC 
13041 

CHM-1775 YS-18QVCS-18IVICNT-
18VVICS 

11 5.50E-20 1775.84 NN This paper 

Streptomyces 
kanamyceticus 
NBRC 13414 

CHM-1748 IS-18GEES-18CFRT-18CT-
18TCS-18LC 

12 3.40E-19 1748.68 YN This paper 

Streptomyces 
sulphureus NRRL 
B-2195 

CHM-2229 TEGGGGDS-18SGCS-18GVCT-
18IVVCT-18VIVC 

9 1.10E-17 2229.95 YN This paper 

Streptomyces 
anulatus NBRC 
12853 

AmfS T-18GS-18QVS-18LLVCEYSS-
18LSVVLCTP 

11 2.10E-17 2212.09 YN Ueda et al.42 

Streptomyces 
anulatus NBRC 
13369 

CHM-1669 C-34LPEPFP+16TATT-
18RVGCD 

11 9.50E-17 1669.78 YN This paper 

Streptomyces 
paludis JCM 
33019 

CHM-1635 S-18GEES-18CFRT-18CT-18T-
18CSLC 

11 2.30E-16 1635.59 YN This paper 

Streptomyces 
anulatus NBRC 
12861 

CHM-2433 CRPPSASLCIT-18SDRS-18S-
18TGRYLSM 

11 3.10E-16 2433.14 NN This paper 

Streptomyces 
brasiliensis NBRC 
101283 

Amfs 
analog 

TGS-18QVS-18VLVCEYS-18S-
18LSVVLCTP 

11 7.10E-16 2198.08 YN Ueda et al.42 

Table 3. Novel and known lanthipeptides discovered by network motif mining. The producer organism, name, sequence, 245 
Dereplicator score, and p-value, mass and references are shown. Moreover, it is also indicated whether the precursor 246 
genes and core peptides are identified by Walker et al. YY means both precursor gene and core peptide are predicted by 247 
Walker et al. YN means the precursor gene is predicted by Walker et al., but the core peptide is inconsistent. NN means 248 
the precursor gene is not predicted by Walker et al.   249 

 250 

Discussion. 251 

The mass spectrometry search tool (MASST) and molecular networking have become powerful 252 
strategies to analyze LC-MS/MS based data to a broad range of users in the research 253 
community2,13,15,17,37,38,39. However, these tools can not scale to searching and clustering large spectral 254 
repositories with hundreds of millions of spectra. As the size of mass spectral repositories doubles 255 
every two to three years, the current implementation of MASST and Molecular Networking will soon 256 



 

 

not be able to meet the needs of biologists and clinicians and thus new solutions are urgently needed. 257 

Recent advances have enabled the determination of molecular formula44 and chemical class45 for a 258 
large portion of spectra in GNPS. Despite these efforts, it is challenging to assign a chemical structure 259 
to the majority of spectra in GNPS. MASST+ and Networking+ provide efficient ways to annotate 260 
this dark matter by elucidating known molecules and their novel variants in repositories as they grow 261 
to billions of mass spectra. MASST+ currently searches query spectra against the clustered GNPS in 262 
a few seconds (in comparison to an hour for MASST), hence enabling instant analysis of the query 263 
mass spectrum of interest. Further, MASST+ can search the entire GNPS, which contains hundreds 264 
of millions of spectra in less than two hours, a task that is currently impossible with MASST. 265 
MASST+ can be parallelized by splitting a set of query spectra among several computational 266 
nodes/threads. Each thread then can run a separate MASST+ search job that utilizes the same index 267 
stored on disk. 268 

Methods 269 

Overview of MASST algorithm. In exact search mode, MASST performs exact search by retrieving 270 
the spectra in the database that have the same precursor mass as the query and computing SharedScore 271 
between each retrieved spectrum and the query. Analog search is conducted by retrieving all spectra 272 
within a large precursor mass tolerance (e.g. 300 Da) of the query precursor mass, and computing the 273 
ShiftedScore (Figure 1). To compute these scores, MASST iterates over all the peaks in the query 274 
spectrum, and for each peak it explores whether a peak with similar or shifted m/z is present in each 275 
database spectrum. Whenever such a peak is present, MASST increments the score between the query 276 
and that database spectrum by the product of the intensity of peaks in the query and the database 277 
spectrum.  278 

MASST+ exact search. Given a query spectrum, MASST+ efficiently searches a database of 279 
reference spectra to find similar spectra by using the fast dot product algorithm (Figure 2). For each 280 
precursor mass  and each peak mass  , a list of indices of all spectra with precursor  and peak 281 
within a tolerance threshold of  are stored, along with intensity of peaks. In case of exact search, 282 
given a query spectrum with precursor mass M, MASST+ iterates through the peaks in the query 283 
spectrum and retrieves the lists corresponding to the peaks and precursor mass M. As each list is 284 
stored on disk, each list can be retrieved in O(1) time. The SharedScore is then calculated by 285 
multiplying and adding up the intensity of each peak in the query spectrum and reference spectra 286 
(Figure 1).  287 

MASST+ analog search. In the case of analog search, MASST+ uses a large precursor mass 288 
tolerance (e. g. 300Da) and computes ShiftedScore (Figure 1). ShiftedScore takes into account both 289 
shared and ∆-shifted peaks, where ∆ is the mass difference between the query and each reference 290 
spectrum. In analog mode, all reference spectra are processed into lists as in MASST+ exact search. 291 
Given a query spectrum, MASST+ analog search iterates through each peak � in the query spectrum 292 
with precursor mass �, and scans lists  (�′,�′) where either �=�′(shared peak) or �−�=�′−�′ (shifted 293 
peak). The ShiftedScore between the query and each reference spectrum is calculated by multiplying 294 
and adding up the intensity of shared and shifted peaks in the two spectra (Supplementary Fig. 4). 295 
Note that MASST+ analog search is a variant of the fast dot product algorithm (Figure 2) as both 296 
methods rely on similarly structured index tables. Rather than just retrieving one list for each query 297 
spectrum peak, however, MASST+ analog search retrieves two lists. 298 

MASST+ indexing. To handle continuous values of peak masses, we bin peak masses into discrete 299 
values. Depending on the bin size and product mass tolerance, one or more bins must be retrieved 300 
when processing each query peak during search. We use a bin size of 0.01Da, which can handle both 301 
high-resolution (0.01Da accuracy) and low-resolution (0.5Da accuracy) data. 302 
 303 



 

 

Overview of Molecular Networking. In order to find structurally related families of small 304 
molecules, the existing molecular networking method first clusters spectra from identical molecules 305 
using MS-Clustering29. It then connects clusters of related molecules using spectral networking28. 306 
MS-Clustering puts two spectra in the same cluster if their precursor mass difference is below a 307 
threshold (usually 2 Da) and their cosine dot product (a normalized SharedScore) is above a certain 308 
threshold (usually 0.7). Then for each cluster, a consensus spectrum is constructed using the approach 309 
introduced by Frank et al28.  In spectral networking, two consensus spectra are connected to each 310 
other if the shared-shifted cosine score (normalized ShiftedScore) is above a threshold (default is 0.7).  311 

 312 
Networking+ algorithm. Networking+ consists of two modules, Clustering+ and Pairing+. 313 
Clustering+ is implemented using a greedy procedure (Supplementary Fig. 12). Given a dataset of N 314 
spectra, Clustering+ creates an initial cluster whose center is set to be the first spectrum in the dataset. 315 
Then in the following N-1 iterations, the similarity score between each remaining spectra and all the 316 
existing cluster centers is calculated. To efficiently calculate the similarity score between the 317 
spectrum and all cluster centers, an indexing table similar to MASST+ exact search is constructed 318 
and iteratively updated. For each precursor mass M and peak mass p, the indexing table stores the list 319 
of all clusters that have centers with a specific precursor mass M and a peak mass �. At each iteration, 320 
whenever the highest score between the spectrum and cluster centers is greater than a threshold 321 
(default is 0.7), the spectrum is added to the highest-scoring cluster, and the center of the cluster is 322 
updated.  If the highest score is below the threshold, then a new cluster is created, and the current 323 
spectrum is set as the center of the cluster. This procedure continues until all the spectra are clustered.  324 

To maintain efficiency, whenever a new spectrum is added, the center is updated only when the 325 
cluster size doubles (e.g. after the addition of the first, second, fourth, eighth, sixteenth, etc. spectrum 326 
to the cluster). Similar to Frank et al [28], the center is computed by adding peaks that are present in 327 
the majority of the members of the cluster. The intensity of each peak is calculated as the average of 328 
the intensity of the corresponding peaks in members. All spectra are initially normalized.   329 

Pairing+ computes a score similar to MASST+ analog search (Supplementary Fig. 4) that accounts 330 
for ∆-shifted and shared peaks for all pairs of input spectra (e.g. cluster centers from clustering+). To 331 
do this, it constructs an indexing table similar to MASST+ analog search. Then the table is used to 332 
efficiently compute the score between all pairs of spectra (Supplementary Fig. 13).  333 

Data Availability. The datasets analyzed are available at gnps.ucsd.edu. Accession codes to all the 334 
analyzed datasets are available in the supplementary material. 335 

Code Availability. MASST+, Clustering+, and Networking+ are available at 336 
https://github.com/mohimanilab/MASSTplus. 337 
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