
DynPartition: Automatic Optimal Pipeline Parallelism of Dynamic Neural
Networks over Heterogeneous GPU Systems for Inference Tasks

Fan Pu Zeng
Carnegie Mellon University
School of Computer Science

Vivswan Shah
University of Pittsburgh

Electrical and Computer Engineering

Yudong Liu
Carnegie Mellon University
School of Computer Science

Abstract

Dynamic neural networks are slowly gaining popular-
ity due their ability to adapt their structures or parameters
to different inputs, leading to notable advantages in terms
of accuracy, computational efficiency, and adaptivity, in
comparison to static models which have fixed computa-
tional graphs and parameters. We propose a novel rein-
forcement learning-based scheduler called DynPartition
that performs dynamic partitioning of computation across
multiple heterogeneous GPUs for dynamic neural net-
work inference tasks . Our scheduler is trained through
previous iterations to generate an optimal forward sched-
ule across heterogeneous GPUs given the network input.
Our experiments show that the RL-based scheduler can
successfully converge towards optimal distribution of
computation across devices during inference tasks.

1 Introduction

The need to scale up machine learning in the trend of a
rapid growth of data both in volume and in variety raises
the demand for distributing the computation of machine
learning models architectures to different devices [8]. Al-
though there has been a considerable amount of work
studying the distributed machine learning for large com-
plex neural network architectures, most of these work
focuses on distributing static neural networks to multiple
devices following simple and trivial strategies. However,
as modeling complex relations drastically increases the
demand for more adaptive neural networks, dynamic net-
works emerged as an alternative to static models. Since
these models can adapt their structures or parameters to
different inputs, they have notable advantages in terms
of accuracy, computational efficiency, and adaptivity [1].
Therefore, performing distributed batching, training and
inference on large dynamic model architectures has be-
come a new challenge.

The trivial and widely adopted solution would be to
distribute each stage of the dynamic neural networks
into one of the GPUs and follow a fixed partition of
computation across iterations. However, a non-dynamic

strategy would inevitably lead to poor load-balancing
schedules across devices as the stage complexity in each
GPU change according to inputs, and is therefore inca-
pable of optimally distributing workload across workers
over iterations. Under such scenarios, faster workers or
those with lighter workloads are under-utilized and will
idle while waiting for the slower or more heavily-loaded
workers for essential gradient or weight synchronization,
which in turn results in inefficiency of the entire clus-
ter. [9]

To address these challenges, we developed DynParti-
tion, which is a reinforcement-learning based scheduler
with a Deep Q Network architecture, which takes as in-
put a fixed-size representation of the input, and outputs
an allocation of nodes in the computation graph to the
device (CPU or one of the CUDA devices) that it should
run on.

We will show that it is able to successfully partition
dynamic neural network computation across multiple
GPUs, while also discussing the limitations of our exper-
imental results due to the restrictions of the evaluation
framework we developed.

2 Problem Statement

In order to develop a dynamic partitioning policy to en-
sure Heterogeneous GPUs accomplish their tasks almost
synchronously in each iteration, there are three factors
we need to be able to model in our approach:

1. The computational capability of each GPU,

2. The dynamic architectures and connections within
the network,

3. The cost of the operations that we need to perform,
including the time of running the forward pass in
each module and the overhead of transferring data
across devices.

All of these factors will be modeled either implicitly or
explicitly in SCHEDULERENV.



Solving the open problem of distributed dynamic ma-
chine learning is not easy. We aim to start with an ideal
scenario of performing inference on a dynamic neural
network, where the neural network takes on a tree-like
structure, in which the dynamism of the model lies with
the connections between the different modules. A typical
example of networks that satisfy our requirements are
TreeLSTM networks [3].

Github: https://github.com/fanpu/DynPartition

3 Background and Related Work

We investigate the question of how we can efficiently
perform inference on a large model distributed over mul-
tiple heterogeneous devices by optimizing for how the
model is split between the different devices. We consider
this under the context of model parallelism, where the
model weights are too large to fit on a single GPU and
are therefore split up among multiple GPUs. We clarify
that we are not concerned about data parallelism, which
is a separate context where the entire model is loaded on
each GPU, and they perform inferences on the input in
parallel.

We now provide some background on our setup and
approach, and also provide an overview of existing work
done in this space.

3.1 Motivation

Previous work from Mirhoseini et al. 2017 [4] devel-
oped reinforcement-learning based strategies for optimal
partitioning that perform up to 20% faster than human
expert’s placements. As the size of neural network mod-
els grows, and the number and diversity of computational
resources continue to increase, the problem of solving
for optimal partitioning will become progressively more
complex, and we predict that it will be increasingly the
case that optimal policies found by algorithms will sur-
pass those crafted by human experts by even larger mar-
gins.

This suggests that there can be a lot of gains in in-
ference efficiency from our proposal to build a general
framework for optimal partitioning of models to GPU
resources, which directly translates to money saved from
running these large models, and is good for both business
and the environment.

The approach to model parallelism that we will use in
this paper is pipeline parallelism. In pipelined parallelism,
the layers of the network are split into stages, and groups
of consecutive stages are assigned to different GPUs. The
communication between GPUs between each group of
stages represents an overhead that should be minimized.
Model parallelism can also be thought of as splitting the
model vertically, if we imagine the model diagram with
layers going from left to right.

Note that we always want the stages on the same GPU
to be consecutive in order to minimize the amount of
communication overhead.

Figure 1: Workers waiting on backward passes to com-
plete results in pipeline stalls and inefficient utilization
of GPU resources. [6]

Figure 2: Overview diagram of RL based device place-
ment model. [4].

A key design consideration in pipeline parallelism is
to balance the workload between the GPUs evenly and
to avoid pipeline stalls. Pipeline stalls pose a particularly
bad problem for training tasks as illustrated by Figure 1,
since the next batch has to wait for the backward pass
to complete across all the stages of each node before
it can proceed. This problem is addressed in depth by
PipeDream [6], which solves it by adding inter-batch
pipelining to intra-batch parallelism, and shows that the
method results in training performance that is 5.3x faster
than existing intra-batch parallelism techniques.

Our paper will instead focus on inference tasks instead
of training tasks, which avoids the problem of pipeline
stalls due to waiting for the backward pass.

3.2 Device Placement Optimization using Reinforce-
ment Learning Methods

Mirhoseini et al. 2017 [4] addresses a similar problem
as us in the specific setting of optimizing the placement of
operations in a TensorFlow computational graph among
heterogeneous devices. This is achieved using reinforce-
ment learning to learn a placement policy that optimizes
for the execution time, and is illustrated in Figure 2. The
execution time is a summary statistic the two variables
that we care about: computational time and communica-
tion time. The authors observed empirically that using

Figure 3: Device placement architecture diagram. [4].

2

https://github.com/fanpu/DynPartition


Figure 4: The three different type of dynamic neural network with routing are: (a) MoE with soft weighting, (b) MoE
with hard gating, and (c) Tree structure (in this figure each node acts as a routing node as well, but in reality routing can
be separated from the compute node.) [1]

the square root of the running time as the reward signal
results in a more robust learning process. The architec-
ture of their prediction model is a sequence-to-sequence
model with LSTM and a content-based attention mech-
anism, and is sketched out in Figure 3. They evaluated
their approach on neural network architectures including
Inception-V3, Recurrent Neural Language Model, and
Neural Machine Translation.

The primary challenge to their approach of attempt-
ing to optimize over all the operations in the TensorFlow
computational graph is that there are usually thousands of
operations, making training very unstable due to vanish-
ing/exploding gradients. As such, they employed many
heuristics to merge operations into what they call co-
location groups, which are always assigned together to
the same device, therefore decreasing the granularity of
their optimization problem.

Our approach will take the opposite extreme by instead
having the user specify natural high-level partitions of
the model, which is faster to optimize over and to per-
form placement predictions on. While this comes at a
cost of not being able to recover the global best partition-
ing strategy, our hypothesis is that the natural abstrac-
tion boundary between different network components
form a sufficiently good partition to optimize over, as
intra-component nodes tend to have high communication
which makes splitting them them up very costly.

We also note that Mirhoseini et al. 2017 [4] consid-
ers optimization in the context of static neural networks
based on the compiled computation graph in TensorFlow.
On the other hand, our approach will generalize to dy-
namic neural networks.

3.3 Scaling Giant Models With Automatic Sharding

Google introduced the GShard library [2] that al-
lows tensors to be easily sharded across nodes. This
is achieved by annotating tensors as either replicate,
split, or shard, which indicates whether the tensor
should be replicated, partitioned along a specified dimen-
sion, or sharded across multiple dimensions respectively.
GShard can then automatically perform sharding for the
tensors and adapt to the underlying hardware, with the

user to also specify some manual partitioning policies as
needed. [2]

GShard does not require the user to annotate every
tensor, and the compiler is capable of using heuristics to
infer which sharding attribute to apply to un-annotated
tensors. Annotations are usually only performed manu-
ally on expensive operators like Einsums, where the cost
of getting it wrong is much higher.

We adopt a similar annotation-based approach from
GShard by having the user manually specify a vertical
network partition.

3.4 Dynamic Neural Networks

To introduce additional novelty in our work, our ap-
proach will be considered in the context of dynamic neu-
ral networks. Dynamic neural networks are neural net-
works that can change their structure or behavior during
runtime, as opposed to static neural networks, which have
a fixed architecture and do not change during runtime.

Examples of dynamic neural networks include tree
long short-term memory (TreeLSTM) networks and MoE
transformer models.

3.5 Distributed Dynamic Neural Networks

As illustrated in Figure 4, this paper focus on the inves-
tigation of dynamic neural networks in which dynamism
of the model lies with the connections between the dif-
ferent modules, that is as the dynamism of the model
originates from routing steps taken after each output. Al-
though the distribution of MoE based dynamic neural
networks over multiple nodes has been accomplished by
GShard using data parallelism approach [2], hence is not
the focus of our paper. Instead, we center our attention on
Dynamic Routing Neural Networks with a Tree structure.
The self-contained nature of each stage within this struc-
ture enables us to distribute the network through pipeline
parallelism without modifying the modules themselves.
This approach, coupled with real-time learning of Dyn-
Partition, allows us to optimize node distribution for the
inference task based on previous inference examples.
DynPartition node distribution is optimized to minimize
overall computation time during inference and reduces

3



data transfer between GPUs.

4 Methodology

We re-iterate the context of the problem that we are
solving, and address their unique challenges and simpli-
fications that it affords us.

Our context is to optimize for partitioning via pipeline
parallelism, where the models are dynamic neural net-
works, evaluated on inference tasks, with underlying
heterogeneous hardware.

1. Pipeline parallelism: It is easier to estimate com-
munication costs between different stages if we only
consider pipeline parallelism, even in the presence
of dynamism. The underlying optimization problem
also becomes much easier to solve. In contrast, it
is much harder to optimize for tensor parallelism
where data must frequently be exchanged between
different GPUs. Since cross-GPU talk is expensive
as it requires traversing through the interconnect, do-
ing so is only beneficial in the most extreme cases
when the benefits are very significant. Therefore,
in the spirit of simplifying the problem without de-
grading the optimal partitioning strategy too much,
we will only consider pipeline parallelism.

2. Dynamic neural networks: Many state-of-the-
art large neural networks increasingly rely on dy-
namism, which allows for greater expressiveness
and can also result in greater efficiency. We target
dynamic neural networks in order to support this
ongoing trend.

However, dynamic neural networks also introduces
challenges. The cost of running input through a
stage now depends not only on the stage and un-
derlying hardware, but also depends on the input
due to dynamism in the network. It can be challeng-
ing to learn a estimate of what different inputs will
cost. Many dynamic neural networks, such as Trans-
formers models, can also be challenging to partition
for pipeline parallelism.

3. Inference tasks: The level of dynamism exhibited
by dynamic neural networks tend to be lower during
inference as opposed to training time. This helps
to simplify the problem of estimating the cost func-
tions. For instance, dropout in neural networks is
only applied during training, but not during infer-
ence. However, for models like LSTMs which han-
dle variable-length input there is dynamism during
both inference and training.

Furthermore, considering this only in the context of
inference avoids the issue of gradients faced during
training, which could result in significant dynamic
cross-talk between GPUs that can be very hard to
model. Hence this is another form of simplification.

In addition, most of the computational resources is
spent on model inference after it is trained, making
it an ongoing cost and hence there is significant
incentive to optimize for inference.

4. Heterogeneous hardware: The rapid pace of ad-
vancements in GPU hardware means that compu-
tational resources available are increasingly het-
erogeneous. Heterogeneous computing also makes
sense from a cost perspective, where spare capac-
ity from cloud providers like AWS Spot instances
can be used at a fraction of the price compared to
on-demand pricing, with the caveat that one has to
flexibly adapt between whichever hardware that is
available. We thus tailor our approach to address
this ongoing trend.

4.1 Input Processing Pipeline

To represent the structure of tree datasets in a tensor,
a multi-step approach was followed. First, the tree was
converted into a list by in-order traversal. This ensures
that the information from each node was captured in a
sequential and deterministic manner.

Next, the resulting list was converted into an array that
contained each node information, including its position
within the tree, its depth, and its parent node. That is,
mapping the nodes in the list to their respective positions
in the array, thus creating a structured representation of
the tree.

Finally, to represent this array in a tensor, a sinusoidal
positional embedding technique was employed. This
method involves representing each position in the ar-
ray with a unique vector that captures its position in the
sequence. By doing so, the tensor could effectively rep-
resent the structured information of the variable-length
tree as a fixed-size matrix.

Overall, this approach involved a series of steps that
effectively captured the structure of tree datasets in a
fixed-size tensor representation, which can then be used
for the RL pipeline for training DynPartition.

4.2 Our Approach

We introduce a new framework called DynPartition
that is built on top of PyTorch. DynPartition is currently
specialized for dynamic neural networks that has a tree-
like computation structure, such as TreeLSTMs and our
MathFunc framework (Section 5). Extending this to
generic dynamic neural networks is given as future work
(Section 10).

From a high-level point of view, the way DynPartition
works is summarized in Figure 5.

SCHEDULERENV is a custom-developed Gymnasium
environment that provides a uniform interface for RL
agents (see Section 6.1). It provides as states the en-
coded states of randomly sampled input from our training
dataset, and takes in actions as input. It then executes the

4



Figure 5: High-level architecture overview of DynPartition. The two main components that interact in a feedback
learning loop are SCHEDULERENV and the DynPartition Deep Q-Learning Agent

(a) MathFunc architecture. (b) TreeLSTM architecture. [3].

Figure 6: MathFunc and TreeLSTM Models

action, and outputs a reward, which is the negative of the
execution time (in ms).

DynPartition is a Deep Q-Learning agent that tries
to learn an optimal policy by interacting with SCHED-
ULERENV, with the goal of maximizing its expected re-
wards. Having covered an overview of our approach, we
now dive into specifics.

5 TreeLSTM and MathFunc

DynPartition will initially be evaluated on MathFunc
(a mathematical model) to speed up the creation and
debugging significantly since this can be run on any
GPU without any specific requirements (explained in
following sub-section). The testing will be performed on
pre-trained TreeLSTM [3] to make sure DynPartition is
applicable in the real life.

5.1 MathFunc

MathFunc is a mathematical computational model that
can compute math equation using tree structure, as de-
picted in Figure 6a. The architecture of MathFunc com-

prises a hierarchy of mathematical functions organized
in a tree structure, with the root node gives the output of
the math equation and the leaves nodes representing the
input features. This tree structure allows for efficient com-
putation by enabling the sharing of computation between
different branches of the model. By utilizing MathFunc,
we were able to significantly reduce the run-time of our
DynPartition creation and diagnostic processes. This has
been particularly beneficial as it has allowed us to per-
form these tasks on standard computing devices with
any GPU. Ultimately, this has led to a more efficient
and cost-effective approach to creating and diagnosing
DynPartition.

5.2 TreeLSTM

Tree-LSTM (Long Short-Term Memory) is a neural
network that is designed for modeling tree structures to
represent the connection of different words in a sentence.
It is an extension of the traditional LSTM network, which
is commonly used for sequential data, such as natural
language sentences.

Tree-LSTM is consist of nodes similar to how tree is

5



consist of nodes. Each node in the tree has an associated
LSTM cell. The input to each cell includes the current
node’s content as well as the output from the LSTM
cells of the node’s children. This allows the model to
capture long-term dependencies and context from the
tree structure. The structure of TreeLSTM can be seen in
Figure 6b.

As described thorough out this paper, DynPartition
is designed to optimize the computation of Tree-Based
Dynamic Routing Neural Network, hence the main eval-
uation of the paper will be on TreeLSTM [3].

5.3 Dataset
The MathFunc dataset was generated dynamically

through the on-the-fly combination of 8-10 simple math-
ematical functions, such as addition, subtraction, sine,
cosine, and others. This approach allows for the creation
and testing of DynPartition more efficiently and quickly,
due to the simple and lightweight nature of these basic
math functions. By combining them in a tree model ran-
domly, we were able to create dataset which can be used
in MathFunc, a dynamic tree-based neural network.

For pre-training and inference task of TreeLSTM, Stan-
ford Sentiment Treebank [7] was used. The Stanford Sen-
timent Treebank is a corpus with fully labeled parse trees
that allows for a complete analysis of the compositional
effects of sentiment in language. [7]

6 Deep-Q Reinforcement Learning

6.1 SCHEDULERENV

We created a Gymnasium environment called SCHED-
ULERENV in order to have a standard interface for our
RL learning algorithm. This also makes it easier to eval-
uate and test other RL algorithms in the future. With
reference to the right side of Figure 5, SCHEDULERENV
is built as follows:

• State: Upon each reset of the environment, a new
input is randomly sampled and fixed for the duration
of the episode.

In addition, each episode lasts only for a single time
step. In other words, after an action has been sup-
plied, a reward is returned and the episode ends.

• Action: The action that the user supplies is an al-
location of nodes to devices. Since the number of
nodes can be arbitrary, in practice we set this to 128
nodes, noting that almost all the inputs in our SST
dataset have fewer than 128 nodes, and hence we
removed all inputs with over 128 nodes. For inputs
that have fewer than 128 nodes, we mask out the
actions of the nodes that do not exist.

• Reward: the reward is the negative execution time
of the forward pass of the network based on the allo-
cation in milliseconds, repeated and averaged over

10 runs in order to reduce noise. We elaborate fur-
ther in Section 9.2 why noise reduction is necessary
in order for DynPartition to train well.

6.2 Deep-Q Network Agent
Our DynPartition RL framework is based off Deep-

Q Networks (DQN), also known as Deep Q-Learning,
which has been shown to achieve superhuman results on
tasks such as playing Atari games [5].

In DQN, we use a neural network to try to learn the Q
function, which is a mapping from state and action tuples,
to the value of the state. Since our SCHEDULERENV
environment only has a single time step per episode, this
is equivalent to a mapping from the state encoding and
device allocation to the expectation of the negative of the
running time.

In addition, we make use of a replay buffer (as illus-
trated in Figure 5). While the primary motivation for
using a replay buffer in [5] was to minimize correlations
between the state-action-reward tuples, in our case be-
cause each episode only has a single time step, there are
no correlations between the tuples. Instead, the goal is to
avoid catastrophic forgetting and recency bias, especially
because there is large variability in the execution times of
different inputs that could give misleading reward signals.
This is further elaborated in Section 9.3.

During training time, DynPartition uses an ε-greedy
for selecting actions based on the rewards predicted by
the Q-network. This means that for each node, with 1−ε

probability, it chooses the best device predicted by the
network, and with ε probability, it chooses a device at
random. This hence provides a trade-off between explo-
ration and exploitation, which is important for learning.

During test time, DynPartition uses a greedy policy to
maximize its expected rewards.

7 Computational Infrastructure

Creation and testing of DynPartition requires compute
nodes with GPUs. These compute resources are provided
by the Pitt Center for Research Computing.

The Pitt Center for Research Computing consist of
4 homogeneous GPUs per node. The models of GPUs
available to use are: GeForce GTX1080 Ti, V100, and
A100. However, since Pitt CRC imposes a cost for usage
of these resources, we only used them for final evaluation
and results.

8 Results

The following experiments are conducted on a ma-
chine in the Pitt Center for Research Computing with ac-
cess to Nvidia GeForce GTX 1080Ti GPU and NVIDIA
A100 Tensor Core GPUs.

8.1 Benchmarks
We performed benchmarks on the data transfer speeds,

speed of synchronous vs asynchronous pipeline execu-

6

https://crc.pitt.edu/resources


tions, and computation and communication latencies on
CPU and GPU. These benchmark results allows us to
better interpret the results from the SCHEDULERENV
learning curves.

8.1.1 Data Transfer Speeds

A floating point tensor of 1000 by 1000 size was used
to measure the data transfer speeds between devices as
shown in Figure 7. It is clear from the figure that the
data transfer speed between CUDA (GPU) devices is
approximately 2.2x times the data transfer speed between
CUDA and CPU. Hence, for large transfers it is more
efficient to bypass the CPU if possible.

Figure 7: Data Transfer Latency on Different Devices.

8.1.2 Synchronous vs Asynchronous Pipelines

DynPartition assigns a separate thread to each node of
the tree, enabling computation of a node as soon as the
necessary data is available. Despite the use of individual
threads for each node, the threads must still wait for the
completion of threads associated with the nodes’ chil-
dren. Unfortunately, the notification of the child threads’
completion is not instantaneous due to the operating sys-
tem and processor’s functioning, resulting in additional
overhead. Figure 8 demonstrates the observed overhead,
which cannot be avoided as the utilization of separate
threads is necessary for independent device operation.
The TreeLSTM’s small size and limited computation re-
quirements further highlight this overhead, as discussed
in the section 9.1.

Figure 8: Execution Time for Synchronized vs Async
Pipelines.

8.1.3 Execution Time against Number of GPUs

The results presented in Figure 9 illustrate the latency
and overhead cause by impact of parallel processing
TreeLSTM and MathFunc on different number of devices.
As anticipated, the latency increases with an increase in
the number of devices, due to the fact that the data trans-
fers between devices increases as the number of device
increase hence increasing the overall latency and over-
head. Notably, this trend is more prominent in MathFunc
than in TreeLSTM, as MathFunc involves less compu-
tational load, hence manifying the effects of latency in
comparison to TreeLSTM.

Figure 9: Execution time against GPUs used.

8.1.4 Left-Right Split and State-Output Split

Figure 10 shows the latency associated with when all
the nodes left of the root node in the tree are computed in
device 0 and all the node right to the root are computed
in device 1. While Figure 11 shows the latency associ-
ated with if all the state calculations of each node were
performed on device 0 and all the output calculation of
each node were performed on device 1.

From these results, we can see that the latency in CPU-
GPU calculation is faster than that in GPU-GPU calcula-
tion, that is CPU is performing faster than GPU, which is
contrary to what we expected. This is due to the fact that
MathFunc and TreeLSTM are small models hence can
be easily computed by CPU as discussed in the section
9.1 with more details.

8.2 SCHEDULERENV Learning Curves

The following experiments were conducted on a ma-
chine with access to 4 NVIDIA A100 Tensor Core GPU.
There are therefore five output devices in total: one CPU
device, and 4 CUDA devices. The plots are aggregated in
Figure 12. Each of the experiments are repeated 10 times
with different random seeds to account for the stochastic-
ity in the reinforcement learning process, with the shaded
regions showing the min and max of the rewards at each
episode.

7



Figure 10: Left portion of the tree is on Device 0 and
Right portion of the tree is on Device 1

Figure 11: State calculation on Device 1 and Output
calculation on Device 2

8.2.1 Static Split (GPU)

In the static split GPU baseline policy allocates, all
nodes in the TreeLSTM input are allocated onto the GPU.
The learning curve is given in Figure 13a. It has an aver-
age reward of -11.63, where higher rewards are better.

8.2.2 Static Split (CPU)

Like the previous baseline policy, the static split CPU
baseline policy allocates all nodes in the TreeLSTM
graph to the CPU instead. The learning curve is given in
Figure 13b. It received an average reward of -6.34.

8.2.3 Random Split

In the random split baseline, nodes are randomly allo-
cated with equal probability to either the CPU or the GPU.
The learning curve is given in Figure 13c. It received an
average reward of -10.11.

8.2.4 DynPartition RL Model

The learning curve is given in Figure 13d, with an
average reward of -6.40 at the end. Its reward began in-
creasing after an initial short plateau, showing that Dyn-
Partition was learning how to perform better allocations,
before tapering off at around 4000 episodes.

9 Discussion

Overall, our experiment shows that DynPartition was
capable of learning a good device allocation policy given
sufficient training. Our experiments also yielded several
interesting observations with implications on the gener-

ality of our results, which we now discuss.

9.1 Static CPU Baseline Performs Better than Static
GPU Baseline

Comparing between Figure 13a and Figure 13b, it was
surprising that allocating everything to the CPU was
actually faster than allocating everything to the GPU,
which contradicts conventional wisdom.

This is likely due to the fact that the size of the dynamic
neural networks generated by the inputs are not large
enough for the asymptotic performance advantages of
the GPU to kick in and to overcome the overhead of GPU
communication. Indeed, most of the input had relatively
small trees of under 50 nodes.

However, it is difficult to scale our inputs without
also negatively impacting the difficulty of training our
RL model. This is because the action space of SCHED-
ULERENV is proportionate to the maximum number of
nodes in the TreeLSTM input, as it must output an allo-
cation for each node.

The fact that the naive CPU-only allocation is optimal
for our TreeLSTM framework presents challenges to our
evaluation and the generality of our results. Even though
Figure 13d shows that DynPartition was able to learn
the best partitioning strategy by putting everything on
the CPU, this is prima facie a relatively simple policy
similar to our static CPU baseline, and does not require
it to learn any complicated representations or policies. It
is therefore unclear whether DynPartition would perform
as well when a more complicated policy is optimal.

As such, in Section 10 we discuss how we could design
an alternative framework for future work that can adapt
to arbitrary dynamic neural network architectures instead
of TreeLSTM, where allocating nodes on the GPU would
perform better than just putting it on CPU, and where
learning a more complicated policy of splitting it between
multiple GPUs is necessary.

9.2 Noisy Training Signal

We initially received very pessimistic results during de-
velopment where the rewards of DynPartition was not im-
proving over time, even over a large number of episodes
and random seeds. This was because on our development
environment (which was one of our personal machines
and not a dedicated instance), there were a lot of other
background processes going on. For instance, Xorg 1, the
X Window display server uses GPU acceleration to ren-
der the user interface, which likely results in contention
with our experiments. In addition, we observed many
instances of crashes in rewards in the noisy environment
(Figure 13), although such crashes do not occur on our
dedicated test environment in the Pitt Center for Research
Computing (Figure 12). This highlights the importance
of running SCHEDULERENV in an environment with as
little noise as possible for the best results.

1https://www.x.org/wiki/

8

https://www.x.org/wiki/


(a) All nodes are on GPU (b) All nodes are on CPU

(c) Each node is randomly chosen to be on GPU or CPU (d) Each node device is chosen by DynPartition

Figure 12: Learning Curves on a dedicated test environment with Nvidia A100 over 10,000 episodes on the SCHED-
ULERENV environment on baseline and DynPartition. Repeated over 10 different random seeds, with the max and min
shaded, and the line representing the mean. (Reward =−time [ms])

9.3 Variability in Input Sizes

Figure 12 shows significant noise in the learning
curves. We investigated this by selecting 3 random inputs,
and measuring the rewards over 100 iterations where the
allocations were homogeneous on only either the CPU
or GPU, with the mean and standard deviation of the
rewards plotted in Figure 14.

We see that in addition to the non-negligible noise in
the measured execution times for each individual input,
there was also a large variance in the mean of the exe-
cution times over the different inputs, due to differences
in the sizes of the inputs. This means that even when
an allocation was actually favorable, a larger input tree
would still incur a longer execution time and incorrectly
signal to the RL learning agent that the allocation was
bad, resulting in longer training times and also training
instability.

Unfortunately, having run-time complexity depend on
the input is in fact a feature of dynamic neural networks,
which means that this will be a fundamental challenge
to any learning algorithm. One approach to alleviate this

issue would be to try to normalize the execution time,
with one possible approach being dividing the measured
execution time against the execution time on a homoge-
neous static CPU allocation, which we leave to future
work.

9.4 Input Positional Embedding Trade offs

We were initially concerned that the positional em-
bedding representation of the TreeLSTM inputs could
pose difficulties to DynPartition in learning a good policy,
since it has to learn to reason about an embedding of the
input instead of the raw input (which has variable length).
However, we were unable to test this hypothesis, since
the learnt optimal policy was very simple (see Section
9.1).

10 Future Work

In this section, we discuss future work that follows
immediately from our learnings and experimental results.

9



(a) All nodes are on GPU (b) All nodes are on CPU

(c) Each node randomly chosen to be on GPU or CPU (d) Each node device is chosen by DynPartition

Figure 13: Learning curves on a noisy development environment with a GTX 1650 Super and a single CPU over 1000
episodes on the SCHEDULERENV environment on baseline and DynPartition. Repeated over 5 different random seeds,
with the max and min shaded, and the line representing the mean. The environment was sufficiently noisy that the test
reward for DynPartition was not able to improve over time.

10.1 A General Dynamic Neural Network Evalua-
tion Framework

In our current experiment on TreeLSTM and Math-
Func, the GPU-only based scheduling failed to outper-
form CPU-based scheduling. We think this issue is likely
caused by the scale of our network. The network archi-
tectures we used are too small to offer GPU an advan-
tage over CPU through parallel computation. Instead, the
transfer of data between GPU and CPU memory likely
caused additional overhead that outweighs the advantages
of using a GPU. For future work, we propose conducting
further experiments on larger and more generic dynamic
neural network architectures. This will require a library
capable of encoding arbitrary dynamic network archi-
tectures into tensors so that they can be feed into our
RL-scheduler. One way to do this is to implement a dy-
namic version of MODULE class in PyTorch.

10.2 Investigating Hysteresis from Allocations

When a computer scientist performs an allocation from
nodes in the TreeLSTM graph to devices manually, a
natural approach will be favor locality in adjacent nodes,
so that cross-device talk is minimized as much as possible.
Therefore, we might similarly expect the DynPartition
Q-Learning agent to also learn locality in allocations on
more complicated dynamic neural network structures.

However, this could result in hysteresis in the node
allocation path, which could be a possible failure mode
that results in slower or unstable training. With respect
to Figure 15, consider an input graph in the TreeLSTM
context where the agent learns to prefer locality in assign-
ments (with respect to the in-order traversal of the tree,
as this was one of the available information encoded in
our positional embedding). However, a naive application
of such a strategy could result in an allocation like in Fig-
ure 15, where there are some degenerate execution paths
where data is repeatedly moved from the CPU to GPU

10



Figure 14: Mean and standard deviation of reward of
3 selected inputs, where allocations are either homoge-
neously on either the CPU or GPU. Run on a GTX 1650
Super GPU.

Figure 15: A 2-device setup, where red nodes represent
allocation onto the CPU, and red nodes represent allo-
cations onto the GPU. Learning to prefer locality could
result in hysteresis in allocation.

and back which bottlenecks the progress of the entire
system, and results in a poor training reward even though
other parts of the allocation may be improving.

It would be interesting to explore to what extent this
occurs, and how this can be mitigated to improve training
times.

11 Conclusion

We showed that DynPartition can successfully learn
how to split the computation of inference tasks across
heterogeneous GPUs according to the network architec-
ture and input data. The use of a reinforcement-learning
approach allows for end-to-end modeling of the under-
lying factors contributing to the cost of computation in
forward passes.

Although we were unable to conduct further exper-
iments on more complex or generic dynamic network
architectures due to time limitations, the evidence of
learning based on the rewards that DynPartition receives
still serves as a successful example of using RL-based
methods for modeling system-level overheads to guide
dynamic allocation of computation in deep learning tasks.
We believe our approach carries potential for greatly im-
proving the computational time-efficiency of dynamic

neural networks, which would be possible with a generic
encoding function for different architectures.

References
[1] HAN, Y., HUANG, G., SONG, S., YANG, L., WANG, H., AND

WANG, Y. Dynamic neural networks: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence 44, 11 (2021), 7436–
7456.

[2] LEPIKHIN, D., LEE, H., XU, Y., CHEN, D., FIRAT, O., HUANG,
Y., KRIKUN, M., SHAZEER, N., AND CHEN, Z. Gshard: Scaling
giant models with conditional computation and automatic sharding.
arXiv preprint arXiv:2006.16668 (2020).

[3] MAILLARD, J., CLARK, S., AND YOGATAMA, D. Jointly learning
sentence embeddings and syntax with unsupervised tree-lstms.
Natural Language Engineering 25, 4 (2019), 433–449.

[4] MIRHOSEINI, A., PHAM, H., LE, Q. V., STEINER, B., LARSEN,
R., ZHOU, Y., KUMAR, N., NOROUZI, M., BENGIO, S., AND
DEAN, J. Device placement optimization with reinforcement
learning. CoRR abs/1706.04972 (2017).

[5] MNIH, V., KAVUKCUOGLU, K., SILVER, D., GRAVES, A.,
ANTONOGLOU, I., WIERSTRA, D., AND RIEDMILLER, M. Play-
ing atari with deep reinforcement learning, 2013.

[6] NARAYANAN, D., HARLAP, A., PHANISHAYEE, A., SESHADRI,
V., DEVANUR, N. R., GANGER, G. R., GIBBONS, P. B., AND
ZAHARIA, M. Pipedream: Generalized pipeline parallelism for
dnn training. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (New York, NY, USA, 2019), SOSP
’19, Association for Computing Machinery, p. 1–15.

[7] SOCHER, R., PERELYGIN, A., WU, J., CHUANG, J., MANNING,
C. D., NG, A. Y., AND POTTS, C. Recursive deep models for se-
mantic compositionality over a sentiment treebank. In Proceedings
of the 2013 conference on empirical methods in natural language
processing (2013), pp. 1631–1642.

[8] WANG, H., NIU, D., AND LI, B. Distributed machine learning
with a serverless architecture. In IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications (2019), pp. 1288–1296.

[9] YE, Q., ZHOU, Y., SHI, M., SUN, Y., AND LV, J. Dlb: A dynamic
load balance strategy for distributed training of deep neural net-
works. IEEE Transactions on Emerging Topics in Computational
Intelligence (2022), 1–11.

11


	Introduction
	Problem Statement
	Background and Related Work
	Motivation
	Device Placement Optimization using Reinforcement Learning Methods
	Scaling Giant Models With Automatic Sharding
	Dynamic Neural Networks
	Distributed Dynamic Neural Networks

	Methodology
	Input Processing Pipeline
	Our Approach

	TreeLSTM and MathFunc
	MathFunc
	TreeLSTM
	Dataset

	Deep-Q Reinforcement Learning
	SchedulerEnv
	Deep-Q Network Agent

	Computational Infrastructure
	Results
	Benchmarks
	Data Transfer Speeds
	Synchronous vs Asynchronous Pipelines
	Execution Time against Number of GPUs
	Left-Right Split and State-Output Split

	SchedulerEnv Learning Curves
	Static Split (GPU)
	Static Split (CPU)
	Random Split
	DynPartition RL Model


	Discussion
	Static CPU Baseline Performs Better than Static GPU Baseline
	Noisy Training Signal
	Variability in Input Sizes
	Input Positional Embedding Trade offs

	Future Work
	A General Dynamic Neural Network Evaluation Framework
	Investigating Hysteresis from Allocations

	Conclusion

